Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207–11. https://doi.org/10.1038/nature15535.
Article
CAS
PubMed
PubMed Central
Google Scholar
World Malaria Report. 2019. https://www.who.int/publications/i/item/9789240015791.
Staedke SG, Gonahasa S, Dorsey G, Kamya MR, Maiteki-Sebuguzi C, Lynd A, et al. Effect of long-lasting insecticidal nets with and without piperonyl butoxide on malaria indicators in Uganda (LLINEUP): a pragmatic, cluster-randomised trial embedded in a national LLIN distribution campaign. Lancet. 2020;395(10232):1292–303. https://doi.org/10.1016/S0140-6736(20)30214-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. Elife. 2016;5:e16090. https://doi.org/10.7554/eLife.16090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two fact. Lancet. 2018;391(10130):1577–88. https://doi.org/10.1016/S0140-6736(18)30427-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes A, Lissenden N, Viana M, Toe KH, Ranson H. Anopheles gambiae populations from Burkina Faso show minimal delayed mortality after exposure to insecticide-treated nets. Parasit Vectors. 2020;13(1):17. https://doi.org/10.1186/s13071-019-3872-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, et al. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg. 2003;68(4 Suppl):121–7. https://doi.org/10.4269/ajtmh.2003.68.121.
Article
PubMed
Google Scholar
Killeen GF, Smith TA. Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg. 2007;101(9):867–80. https://doi.org/10.1016/j.trstmh.2007.04.022.
Article
PubMed
PubMed Central
Google Scholar
Killeen GF, Okumu FO, N’Guessan R, Coosemans M, Adeogun A, Awolola S, et al. The importance of considering community-level effects when selecting insecticidal malaria vector products. Parasit Vectors. 2011;4(1):160. https://doi.org/10.1186/1756-3305-4-160.
Article
PubMed
PubMed Central
Google Scholar
Tiono AB, Ouédraogo A, Ouattara D, Bougouma EC, Coulibaly S, Diarra A, et al. Efficacy of Olyset duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: a cluster-randomised controlled trial. Lancet. 2018;392(10147):569–80. https://doi.org/10.1016/S0140-6736(18)31711-2.
Article
PubMed
Google Scholar
Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae ss. Insect Mol Biol. 1998;7(2):179–84. https://doi.org/10.1046/j.1365-2583.1998.72062.x.
Article
CAS
PubMed
Google Scholar
Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juárez MP, et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci. 2016;113(33):9268–73. https://doi.org/10.1073/pnas.1608295113.
Article
CAS
PubMed
Google Scholar
Ingham VAVA, Anthousi A, Douris V, Harding NJNJ, Lycett G, Morris M, et al. A sensory appendage protein protects malaria vectors from pyrethroids. Nature. 2019;577(7790):376–80. https://doi.org/10.1038/s41586-019-1864-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, et al. Field-caught permethrin-resistant anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet. 2008;4(11):e1000286. https://doi.org/10.1371/journal.pgen.1000286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O’Neill PM, Lian L-Y, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol. 2011;41(7):492–502. https://doi.org/10.1016/j.ibmb.2011.02.003.
Article
CAS
PubMed
Google Scholar
Yunta C, Hemmings K, Stevenson B, Koekemoer LL, Matambo T, Pignatelli P, et al. Cross-resistance profiles of malaria mosquito P450s associated with pyrethroid resistance against WHO insecticides. Pestic Biochem Physiol. 2019;161:61–7. https://doi.org/10.1016/j.pestbp.2019.06.007.
Article
CAS
PubMed
Google Scholar
Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol. 2014;15(2):R27. https://doi.org/10.1186/gb-2014-15-2-r27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pignatelli P, Ingham VAA, Balabanidou V, Vontas J, Lycett G, Ranson H. The Anopheles gambiae ATP-binding cassette transporter family: phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance. Insect Mol Biol. 2018;27(1):110–22. https://doi.org/10.1111/imb.12351.
Article
CAS
PubMed
Google Scholar
Feng X, Li M, Liu N. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica. Insect Biochem Mol Biol. 2018;92:30–9. https://doi.org/10.1016/j.ibmb.2017.11.007.
Article
CAS
PubMed
Google Scholar
Ahn S-J, Vogel H, Heckel DG. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem Mol Biol. 2012;42(2):133–47. https://doi.org/10.1016/j.ibmb.2011.11.006.
Article
CAS
PubMed
Google Scholar
Ingham VA, Wagstaff S, Ranson H. Transcriptomic meta-signatures identified in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms. Nat Commun. 2018;9(1):5282. https://doi.org/10.1038/s41467-018-07615-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thiévent K, Hauser G, Elaian O, Koella JC. The interaction between permethrin exposure and malaria infection affects the host-seeking behaviour of mosquitoes. Malar J. 2019;18(1):79. https://doi.org/10.1186/s12936-019-2718-x.
Article
PubMed
PubMed Central
Google Scholar
Gong Y, Li T, Zhang L, Gao X, Liu N. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus. Int J Biol Sci. 2013;9(9):863–71. https://doi.org/10.7150/ijbs.6744.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu N, Li T, Reid WR, Yang T, Zhang L. Multiple cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus. PLoS One. 2011;6(8):e23403. https://doi.org/10.1371/journal.pone.0023403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Festucci-Buselli RA, Carvalho-Dias AS, de Oliveira-Andrade M, Caixeta-Nunes C, Li H-M, Stuart JJ, et al. Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. Insect Mol Biol. 2005;14(1):69–77. https://doi.org/10.1111/j.1365-2583.2005.00532.x.
Article
CAS
PubMed
Google Scholar
Mastrantonio V, Ferrari M, Negri A, Sturmo T, Favia G, Porretta D, et al. Insecticide exposure triggers a modulated expression of ABC transporter genes in larvae of Anopheles gambiae s.s. Insects. 2019;10:66.
Hu B, Zhang S-H, Ren M-M, Tian X-R, Wei Q, Mburu DK, et al. The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. Insect Sci. 2019;26(2):199–216. https://doi.org/10.1111/1744-7917.12538.
Article
CAS
PubMed
Google Scholar
Hu F, Dou W, Wang J-J, Jia F-X, Wang J-J. Multiple glutathione S-transferase genes: identification and expression in oriental fruit fly, Bactrocera dorsalis. Pest Manag Sci. 2014;70(2):295–303. https://doi.org/10.1002/ps.3558.
Article
CAS
PubMed
Google Scholar
Ingham VA, Pignatelli P, Moore JD, Wagstaff S, Ranson H. The transcription factor Maf-S regulates metabolic resistance to insecticides in the malaria vector Anopheles gambiae. BMC Genomics. 2017;18(1):669. https://doi.org/10.1186/s12864-017-4086-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misra JR, Lam G, Thummel CS. Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect Biochem Mol Biol. 2013;43:1116–24. https://doi.org/10.1016/j.ibmb.2013.09.005.
Article
CAS
PubMed
Google Scholar
Misra JR, Horner MA, Lam G, Thummel CS. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev. 2011;25(17):1796–806. https://doi.org/10.1101/gad.17280911.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams J, Flood L, Praulins G, Ingham VA, Morgan J, Lees RS, et al. Characterisation of Anopheles strains used for laboratory screening of new vector control products. Parasit Vectors. 2019;12(1):522. https://doi.org/10.1186/s13071-019-3774-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Martínez M-A, Dai M, Chen D, Ares I, Romero A, et al. Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environ Res. 2016;149:86–104. https://doi.org/10.1016/j.envres.2016.05.003.
Article
CAS
PubMed
Google Scholar
Ingaramo MC, Sánchez JA, Dekanty A. Regulation and function of p53: a perspective from Drosophila studies. Mech Dev. 2018;154:82–90. https://doi.org/10.1016/j.mod.2018.05.007.
Article
CAS
PubMed
Google Scholar
Nakamura M, Baldwin D, Hannaford S, Palka J, Montell C. Defective proboscis extension response (DPR), a member of the Ig superfamily required for the gustatory response to salt. J Neurosci. 2002;22:3463 LP–472. https://doi.org/10.1523/JNEUROSCI.22-09-03463.2002.
Article
Google Scholar
Jordan KW, Craver KL, Magwire MM, Cubilla CE, Mackay TFC, Anholt RRH. Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster. PLoS One. 2012;7(6):e38722. https://doi.org/10.1371/journal.pone.0038722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yunta C, Grisales N, Nász S, Hemmings K, Pignatelli P, Voice M, et al. Pyriproxyfen is metabolized by P450s associated with pyrethroid resistance in an. gambiae. Insect Biochem Mol Biol. 2016;78:50–7. https://doi.org/10.1016/j.ibmb.2016.09.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vontas J, Grigoraki L, Morgan J, Tsakireli D, Fuseini G, Segura L, et al. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities. Proc Natl Acad Sci. 2018;115:4619 LP–4624 http://www.pnas.org/content/115/18/4619.abstract.
Article
Google Scholar
Chiu T-L, Wen Z, Rupasinghe SG, Schuler MA. Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci. 2008;105(26):8855–60. https://doi.org/10.1073/pnas.0709249105.
Article
PubMed
Google Scholar
Huang Y, Guo Q, Sun X, Zhang C, Xu N, Xu Y, et al. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix. Parasit Vectors. 2018;11(1):6. https://doi.org/10.1186/s13071-017-2567-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones CM, Sanou A, Guelbeogo WM, Sagnon N, Johnson PCD, Ranson H. Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso. Malar J. 2012;11:24. https://doi.org/10.1186/1475-2875-11-24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chouaibou MS, Chabi J, Bingham GV, Knox TB, N’Dri L, Kesse NB, et al. Increase in susceptibility to insecticides with aging of wild Anopheles gambiaemosquitoes from Côte d’Ivoire. BMC Infect Dis. 2012;12(1):214. https://doi.org/10.1186/1471-2334-12-214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balmert NJ, Rund SSC, Ghazi JP, Zhou P, Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol. 2014;64:30–9. https://doi.org/10.1016/j.jinsphys.2014.02.013.
Article
CAS
PubMed
Google Scholar
Rund SSC, Hou TY, Ward SM, Collins FH, Duffield GE. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci. 2011;108:E421 LP–E430. https://doi.org/10.1073/pnas.1100584108.
Article
Google Scholar
Malla Reddy P, Bashamohideen M. Modulations in the levels of respiration and ions in carp Cyprinus carpio (L.) exposed to cypermethrin. Environ Monit Assess. 1995;35:221–6. https://doi.org/10.1007/BF00547633.
Article
CAS
PubMed
Google Scholar
Gassner B, Wüthrich A, Scholtysik G, Solioz M. The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther. 1997;281:855 LP–860 http://jpet.aspetjournals.org/content/281/2/855.abstract.
Google Scholar
Braguini WL, Cadena SMSC, Carnieri EGS, Rocha MEM, de Oliveira MBM. Effects of deltamethrin on functions of rat liver mitochondria and on native and synthetic model membranes. Toxicol Lett. 2004;152(3):191–202. https://doi.org/10.1016/j.toxlet.2004.03.017.
Article
CAS
PubMed
Google Scholar
Oliver SV, Brooke BD. The role of oxidative stress in the longevity and insecticide resistance phenotype of the major malaria vectors Anopheles arabiensis and Anopheles funestus. PLoS One. 2016;11(3):e0151049. https://doi.org/10.1371/journal.pone.0151049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fetoui H, Feki A, Ben SG, Kamoun H, Fakhfakh F, Gdoura R. Exposure to lambda-cyhalothrin, a synthetic pyrethroid, increases reactive oxygen species production and induces genotoxicity in rat peripheral blood. Toxicol Ind Health. 2013;31(5):433–41. https://doi.org/10.1177/0748233713475516.
Article
CAS
PubMed
Google Scholar
Parker JEA, Angarita-Jaimes N, Abe M, Towers CE, Towers D, McCall PJ. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact. Sci Rep. 2015;5(1):13392. https://doi.org/10.1038/srep13392.
Article
PubMed
PubMed Central
Google Scholar
Murray GPD, Lissenden N, Jones J, Voloshin V, Toé KH, Sherrard-Smith E, et al. Barrier bednets target malaria vectors and expand the range of usable insecticides. Nat Microbiol. 2019;5(1):40–7. https://doi.org/10.1038/s41564-019-0607-2.
Article
CAS
PubMed
Google Scholar
Oliver SV, Brooke BD. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors. 2014;7(1):390. https://doi.org/10.1186/1756-3305-7-390.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faust JE, Verma A, Peng C, McNew JA. An inventory of peroxisomal proteins and pathways in Drosophila melanogaster. Traffic. 2012;13(10):1378–92. https://doi.org/10.1111/j.1600-0854.2012.01393.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen T-H, Wu Y-J, Hou J-N, Chiu C-H, Chen W-J. The p53 gene with emphasis on its paralogues in mosquitoes. J Microbiol Immunol Infect. 2017;50(6):747–54. https://doi.org/10.1016/j.jmii.2017.06.006.
Article
CAS
PubMed
Google Scholar
Zhou Y, Fu W-B, Si F-L, Yan Z-T, Zhang Y-J, He Q-Y, et al. UDP-glycosyltransferase genes and their association and mutations associated with pyrethroid resistance in Anopheles sinensis (Diptera: Culicidae). Malar J. 2019;18(1):62. https://doi.org/10.1186/s12936-019-2705-2.
Article
PubMed
PubMed Central
Google Scholar
O’Keefe LV, Colella A, Dayan S, Chen Q, Choo A, Jacob R, et al. Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species. Hum Mol Genet. 2010;20(3):497–509. https://doi.org/10.1093/hmg/ddq495.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isaacs AT, Mawejje HD, Tomlinson S, Rigden DJ, Donnelly MJ. Genome-wide transcriptional analyses in Anopheles mosquitoes reveal an unexpected association between salivary gland gene expression and insecticide resistance. BMC Genomics. 2018;19(1):225. https://doi.org/10.1186/s12864-018-4605-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elanga-Ndille E, Nouage L, Binyang A, Assatse T, Tene-Fossog B, Tchouakui M, et al. Overexpression of two members of D7 salivary genes family is associated with pyrethroid resistance in the malaria vector Anopheles funestus ss but not in Anopheles gambiae in Cameroon. Genes (Basel). 2019;10:211.
Article
CAS
Google Scholar
Namountougou M, Simard F, Baldet T, Diabaté A, Ouédraogo JB, Martin T, et al. Multiple insecticide resistance in Anopheles gambiae sl populations from Burkina Faso, West Africa. PLoS One. 2012;7(11):e48412. https://doi.org/10.1371/journal.pone.0048412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akbari OS, Antoshechkin I, Amrhein H, Williams B, Diloreto R, Sandler J, et al. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3 Genes|Genomes|Genetics. 2013;3:1493–509. https://doi.org/10.1534/g3.113.006742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JMC, James AA. Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol. 2006;15(1):1–12. https://doi.org/10.1111/j.1365-2583.2006.00610.x.
Article
CAS
PubMed
Google Scholar
Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez G, et al. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem. 2008;283(6):3217–23. https://doi.org/10.1074/jbc.M705873200.
Article
CAS
PubMed
Google Scholar
Castillo JC, Ferreira ABB, Trisnadi N, Barillas-Mury C. Activation of mosquito complement antiplasmodial response requires cellular immunity. Sci Immunol. 2017;2:eaal1505. https://doi.org/10.1126/sciimmunol.aal1505.
Article
PubMed
PubMed Central
Google Scholar
Organization WH. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2016.
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007;2(1):5–7. https://doi.org/10.6026/97320630002005.
Article
PubMed
PubMed Central
Google Scholar
Schwammle V, Jensen ON. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics. 2010;26(22):2841–8. https://doi.org/10.1093/bioinformatics/btq534.
Article
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, et al. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 2014;43:D707–13.
Article
Google Scholar
Consortium F. The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 2003;31:172–5.
Article
Google Scholar