Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7(2):85–97. https://doi.org/10.1038/nrg1767.
Article
CAS
PubMed
Google Scholar
MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42(Database issue):D986–92. https://doi.org/10.1093/nar/gkt958.
Article
CAS
PubMed
Google Scholar
Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16(3):172–83. https://doi.org/10.1038/nrg3871.
Article
CAS
PubMed
Google Scholar
Mahmoud M, Gobet N, Cruz-Davalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol. 2019;20(1):246. https://doi.org/10.1186/s13059-019-1828-7.
Article
PubMed
PubMed Central
Google Scholar
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–54. https://doi.org/10.1038/nature05329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61(1):437–55. https://doi.org/10.1146/annurev-med-100708-204735.
Article
CAS
PubMed
Google Scholar
Cooper GM, Nickerson DA, Eichler EE. Mutational and selective effects on copy-number variants in the human genome. Nat Genet. 2007;39(7 Suppl):S22–9. https://doi.org/10.1038/ng2054.
Article
CAS
PubMed
Google Scholar
Saitou M, Gokcumen O. An evolutionary perspective on the impact of genomic copy number variation on human health. J Mol Evol. 2020;88(1):104–19. https://doi.org/10.1007/s00239-019-09911-6.
Article
CAS
PubMed
Google Scholar
Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005;307(5714):1434–40. https://doi.org/10.1126/science.1101160.
Article
CAS
PubMed
Google Scholar
Marshall CR, Scherer SW. Detection and characterization of copy number variation in autism spectrum disorder. Methods Mol Biol. 2012;838:115–35. https://doi.org/10.1007/978-1-61779-507-7_5.
Article
CAS
PubMed
Google Scholar
Kushima I, Aleksic B, Nakatochi M, Shimamura T, Shiino T, Yoshimi A, et al. High-resolution copy number variation analysis of schizophrenia in Japan. Mol Psychiatry. 2017;22(3):430–40. https://doi.org/10.1038/mp.2016.88.
Article
CAS
PubMed
Google Scholar
Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature. 2006;439(7078):851–5. https://doi.org/10.1038/nature04489.
Article
CAS
PubMed
Google Scholar
Aerts E, Beckers S, Zegers D, Van Hoorenbeeck K, Massa G, Verrijken A, et al. CNV analysis and mutation screening indicate an important role for the NPY4R gene in human obesity. Obesity (Silver Spring). 2016;24(4):970–6. https://doi.org/10.1002/oby.21435.
Article
CAS
Google Scholar
Rubin CJ, Megens HJ, Martinez Barrio A, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A. 2012;109(48):19529–36. https://doi.org/10.1073/pnas.1217149109.
Article
PubMed
PubMed Central
Google Scholar
Giuffra E, Tornsten A, Marklund S, Bongcam-Rudloff E, Chardon P, Kijas JM, et al. A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm Genome. 2002;13(10):569–77. https://doi.org/10.1007/s00335-002-2184-5.
Article
CAS
PubMed
Google Scholar
Ran XQ, Pan H, Huang SH, Liu C, Niu X, Li S, et al. Copy number variations of MTHFSD gene across pig breeds and its association with litter size traits in Chinese indigenous Xiang pig. J Anim Physiol Anim Nutr (Berl). 2018;102(5):1320–7. https://doi.org/10.1111/jpn.12922.
Article
CAS
Google Scholar
Zheng X, Zhao P, Yang K, Ning C, Wang H, Zhou L, et al. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. J Anim Sci Biotechnol. 2020;11(1):42. https://doi.org/10.1186/s40104-020-00442-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Revilla M, Puig-Oliveras A, Castello A, Crespo-Piazuelo D, Paludo E, Fernandez AI, et al. A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits. PLoS One. 2017;12(5):e0177014. https://doi.org/10.1371/journal.pone.0177014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Z, Xu J, Yin L, Yin D, Zhu M, Yu M, et al. Genome-wide association study reveals candidate genes for growth relevant traits in pigs. Front Genet. 2019;10:302. https://doi.org/10.3389/fgene.2019.00302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao R, Gao J, Zhang Z, Li L, Xie X, Fan Y, et al. Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations. Genet Sel Evol. 2015;47(1):17. https://doi.org/10.1186/s12711-015-0089-5.
Article
PubMed
PubMed Central
Google Scholar
Martinez-Montes AM, Fernandez A, Munoz M, Noguera JL, Folch JM, Fernandez AI. Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed. PLoS One. 2018;13(3):e0190184. https://doi.org/10.1371/journal.pone.0190184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Jennen DG, Tholen E, Juengst H, Kleinwachter T, Holker M, et al. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim Genet. 2007;38(3):241–52. https://doi.org/10.1111/j.1365-2052.2007.01592.x.
Article
CAS
PubMed
Google Scholar
Xu L, Yang L, Wang L, Zhu B, Chen Y, Gao H, et al. Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle. BMC Genomics. 2019;20(1):31. https://doi.org/10.1186/s12864-018-5403-5.
Article
PubMed
PubMed Central
Google Scholar
Ding R, Yang M, Wang X, Quan J, Zhuang Z, Zhou S, et al. Genetic architecture of feeding behavior and feed efficiency in a Duroc pig population. Front Genet. 2018;9:220. https://doi.org/10.3389/fgene.2018.00220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17(11):1665–74. https://doi.org/10.1101/gr.6861907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen DQ, Webber C, Ponting CP. Bias of selection on human copy-number variants. PLoS Genet. 2006;2(2):e20. https://doi.org/10.1371/journal.pgen.0020020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, et al. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genomics. 2012;13(1):733. https://doi.org/10.1186/1471-2164-13-733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Tang Z, Sun Y, Wang H, Wang C, Yu S, et al. Analysis of genome-wide copy number variations in Chinese indigenous and western pig breeds by 60 K SNP genotyping arrays. PLoS One. 2014;9(9):e106780. https://doi.org/10.1371/journal.pone.0106780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiedmann RT, Nonneman DJ, Rohrer GA. Genome-wide copy number variations using SNP genotyping in a mixed breed swine population. PLoS One. 2015;10(7):e0133529. https://doi.org/10.1371/journal.pone.0133529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Jiang J, Wang H, Kang H, Zhang Q, Liu JF. Improved detection and characterization of copy number variations among diverse pig breeds by Array CGH. G3 (Bethesda). 2015;5(6):1253–61.
Article
Google Scholar
Xie J, Li R, Li S, Ran X, Wang J, Jiang J, et al. Identification of copy number variations in Xiang and Kele pigs. PLoS One. 2016;11(2):e0148565. https://doi.org/10.1371/journal.pone.0148565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stafuzza NB, Silva RMO, Fragomeni BO, Masuda Y, Huang Y, Gray K, et al. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genomics. 2019;20(1):321. https://doi.org/10.1186/s12864-019-5687-0.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Zhang T, Wang C. Detection and analysis of genome-wide copy number variation in the pig genome using an 80 K SNP Beadchip. J Anim Breed Genet. 2020;137(2):166–76. https://doi.org/10.1111/jbg.12435.
Article
CAS
PubMed
Google Scholar
Keel BN, Nonneman DJ, Lindholm-Perry AK, Oliver WT, Rohrer GA. A survey of copy number variation in the porcine genome detected from whole-genome sequence. Front Genet. 2019;10:737. https://doi.org/10.3389/fgene.2019.00737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008;299(11):1335–44. https://doi.org/10.1001/jama.299.11.1335.
Article
CAS
PubMed
Google Scholar
Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res. 2020;48(D1):D682–8. https://doi.org/10.1093/nar/gkz966.
Article
CAS
PubMed
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–12. https://doi.org/10.1093/nar/gky1120.
Article
CAS
PubMed
Google Scholar
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. https://doi.org/10.1038/nature08494.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456(7218):18–21. https://doi.org/10.1038/456018a.
Article
CAS
PubMed
Google Scholar
Long Y, Su Y, Ai H, Zhang Z, Yang B, Ruan G, et al. A genome-wide association study of copy number variations with umbilical hernia in swine. Anim Genet. 2016;47(3):298–305. https://doi.org/10.1111/age.12402.
Article
CAS
PubMed
Google Scholar
Conrad DF, Hurles ME. The population genetics of structural variation. Nat Genet. 2007;39(7 Suppl):S30–6. https://doi.org/10.1038/ng2042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brewer C, Holloway S, Zawalnyski P, Schinzel A, FitzPatrick D. A chromosomal duplication map of malformations: regions of suspected haplo- and triplolethality--and tolerance of segmental aneuploidy--in humans. Am J Hum Genet. 1999;64(6):1702–8. https://doi.org/10.1086/302410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Locke DP, Sharp AJ, McCarroll SA, McGrath SD, Newman TL, Cheng Z, et al. Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am J Hum Genet. 2006;79(2):275–90. https://doi.org/10.1086/505653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One. 2009;4(8):e6524. https://doi.org/10.1371/journal.pone.0006524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong K, Pu Y, Yao N, Shu G, Liu X, He X, et al. Copy number variation detection using SNP genotyping arrays in three Chinese pig breeds. Anim Genet. 2015;46(2):101–9. https://doi.org/10.1111/age.12247.
Article
CAS
PubMed
Google Scholar
Upadhyay M, da Silva VH, Megens HJ, Visker M, Ajmone-Marsan P, Balteanu VA, et al. Distribution and functionality of copy number variation across European cattle populations. Front Genet. 2017;8:108. https://doi.org/10.3389/fgene.2017.00108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Jiang J, Yang J, Liu X, Wang J, Wang H, et al. Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins. BMC Genomics. 2013;14(1):131. https://doi.org/10.1186/1471-2164-14-131.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warr A, Robert C, Hume D, Archibald AL, Deeb N, Watson M. Identification of low-confidence regions in the pig reference genome (Sscrofa10.2). Front Genet. 2015;6:338.
Article
PubMed
PubMed Central
Google Scholar
Zhou S, Ding R, Meng F, Wang X, Zhuang Z, Quan J, et al. A meta-analysis of genome-wide association studies for average daily gain and lean meat percentage in two Duroc pig populations. BMC Genomics. 2021;22(1):12. https://doi.org/10.1186/s12864-020-07288-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang Z, Ding R, Peng L, Wu J, Ye Y, Zhou S, et al. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genomics. 2020;21(1):344. https://doi.org/10.1186/s12864-020-6742-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorssen W, Meyermans R, Buys N, Janssens S. SNP genotypes reveal breed substructure, selection signatures and highly inbred regions in Pietrain pigs. Anim Genet. 2020;51(1):32–42. https://doi.org/10.1111/age.12888.
Article
CAS
PubMed
Google Scholar
Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17(11):704–14. https://doi.org/10.1038/nrg.2016.104.
Article
CAS
PubMed
Google Scholar
Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094–101. https://doi.org/10.1172/JCI45887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivera-Gonzalez GC, Shook BA, Andrae J, Holtrup B, Bollag K, Betsholtz C, et al. Skin adipocyte stem cell self-renewal is regulated by a PDGFA/AKT-signaling Axis. Cell Stem Cell. 2016;19(6):738–51. https://doi.org/10.1016/j.stem.2016.09.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
He C, Medley SC, Hu T, Hinsdale ME, Lupu F, Virmani R, et al. PDGFRbeta signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6(1):7770. https://doi.org/10.1038/ncomms8770.
Article
CAS
PubMed
Google Scholar
Iwayama T, Steele C, Yao L, Dozmorov MG, Karamichos D, Wren JD, et al. PDGFRalpha signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev. 2015;29(11):1106–19. https://doi.org/10.1101/gad.260554.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Z, Daquinag AC, Su F, Snyder B, Kolonin MG. PDGFRalpha/PDGFRbeta signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Dev Suppl. 2018;145(1):dev155861. https://doi.org/10.1242/dev.155861.
Cartwright BR, Goodman JM. Seipin: from human disease to molecular mechanism. J Lipid Res. 2012;53(6):1042–55. https://doi.org/10.1194/jlr.R023754.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kociucka B, Jackowiak H, Kamyczek M, Szydlowski M, Szczerbal I. The relationship between adipocyte size and the transcript levels of SNAP23, BSCL2 and COPA genes in pigs. Meat Sci. 2016;121:12–8. https://doi.org/10.1016/j.meatsci.2016.05.011.
Article
CAS
PubMed
Google Scholar
Olde B, Leeb-Lundberg LM. GPR30/GPER1: searching for a role in estrogen physiology. Trends Endocrinol Metab. 2009;20(8):409–16. https://doi.org/10.1016/j.tem.2009.04.006.
Article
CAS
PubMed
Google Scholar
Sharma G, Hu C, Brigman JL, Zhu G, Hathaway HJ, Prossnitz ER. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology. 2013;154(11):4136–45. https://doi.org/10.1210/en.2013-1357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai L, Chu X, Lu F, Xu R. Detection of four polymorphisms in 5′ upstream region of PNPLA2 gene and their associations with economic traits in pigs. Mol Biol Rep. 2016;43(11):1305–13. https://doi.org/10.1007/s11033-016-4068-x.
Article
CAS
PubMed
Google Scholar
Suzuki K, Kadowaki H, Shibata T, Uchida H, Nishida A. Selection for daily gain, loin-eye area, backfat thickness and intramuscular fat based on desired gains over seven generations of Duroc pigs. Livest Prod Sci. 2005;97(2–3):193–202. https://doi.org/10.1016/j.livprodsci.2005.04.007.
Article
Google Scholar
Wang Y, Ding X, Tan Z, Ning C, Xing K, Yang T, et al. Genome-wide association study of piglet uniformity and farrowing interval. Front Genet. 2017;8:194. https://doi.org/10.3389/fgene.2017.00194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1):7. https://doi.org/10.1186/s13742-015-0047-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Xu L, Zhu B, Niu H, Zhang W, Miao J, et al. Genome-wide analysis reveals differential selection involved with copy number variation in diverse Chinese cattle. Sci Rep. 2017;7(1):14299. https://doi.org/10.1038/s41598-017-14768-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diskin SJ, Li M, Hou C, Yang S, Glessner J, Hakonarson H, et al. Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Res. 2008;36(19):e126. https://doi.org/10.1093/nar/gkn556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JH, Hu HJ, Yim SH, Bae JS, Kim SY, Chung YJ. CNVRuler: a copy number variation-based case-control association analysis tool. Bioinformatics. 2012;28(13):1790–2. https://doi.org/10.1093/bioinformatics/bts239.
Article
CAS
PubMed
Google Scholar
Rychlik W. OLIGO 7 primer analysis software. Methods Mol Biol. 2007;402:35–60. https://doi.org/10.1007/978-1-59745-528-2_2.
Article
CAS
PubMed
Google Scholar
Ballester M, Castello A, Ibanez E, Sanchez A, Folch JM. Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals. Biotechniques. 2004;37(4):610–3. https://doi.org/10.2144/04374ST06.
Article
CAS
PubMed
Google Scholar
Lin CH, Lin YC, Wu JY, Pan WH, Chen YT, Fann CS. A genome-wide survey of copy number variations in Han Chinese residing in Taiwan. Genomics. 2009;94(4):241–6. https://doi.org/10.1016/j.ygeno.2009.06.004.
Article
CAS
PubMed
Google Scholar
Lee YL, Bosse M, Mullaart E, Groenen MAM, Veerkamp RF, Bouwman AC. Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics. 2020;21(1):89. https://doi.org/10.1186/s12864-020-6496-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, et al. Common deletion polymorphisms in the human genome. Nat Genet. 2006;38(1):86–92. https://doi.org/10.1038/ng1696.
Article
CAS
PubMed
Google Scholar
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44(7):821–4. https://doi.org/10.1038/ng.2310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding R, Yang M, Quan J, Li S, Zhuang Z, Zhou S, et al. Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc pigs. Front Genet. 2019;10:619. https://doi.org/10.3389/fgene.2019.00619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, Cui J, Chazaro I, Cupples LA, Demissie S. Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genet. 2005;6(Suppl 1):S134.
Article
PubMed
PubMed Central
Google Scholar
Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics. 2007;23(4):401–7. https://doi.org/10.1093/bioinformatics/btl633.
Article
CAS
PubMed
Google Scholar