Escaramís G, Docampo E, Rabionet R. A decade of structural variants: description, history and methods to detect structural variation. Brief Funct Genomics. 2015;14(5):305–14. https://doi.org/10.1093/bfgp/elv014.
Article
CAS
PubMed
Google Scholar
Matsuzaki H, Wang PH, Hu J, Rava R, Fu GK. High resolution discovery and confirmation of copy number variants in 90 Yoruba Nigerians. Genome Biol. 2009;10:1–18.
Article
Google Scholar
Fan S, Meyer A. Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes. Front Genet. 2014;5(JUN):163.
PubMed
PubMed Central
Google Scholar
Conrad DF, Hurles ME. The population genetics of structural variation. Nat Genet. 2007;39(S7):S30–6. https://doi.org/10.1038/ng2042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2019;21(3):171–89. https://doi.org/10.1038/s41576-019-0180-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sebat J, Levy DL, McCarthy SE. Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet. 2009;25(12):528–35. https://doi.org/10.1016/j.tig.2009.10.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525–8. https://doi.org/10.1126/science.1098918.
Article
CAS
PubMed
Google Scholar
Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–51. https://doi.org/10.1038/ng1416.
Article
CAS
PubMed
Google Scholar
Feuk L, Marshall CR, Wintle RF, Scherer SW. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet. 2006;15(suppl_1):R57–66.
Article
CAS
PubMed
Google Scholar
Huang CRL, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, et al. Mobile interspersed repeats are major structural variants in the human genome. Cell. 2010;141(7):1171–82. https://doi.org/10.1016/j.cell.2010.05.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–54. https://doi.org/10.1038/nature05329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet. 2007;8(8):639–46. https://doi.org/10.1038/nrg2149.
Article
CAS
PubMed
Google Scholar
Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16(3):172–83. https://doi.org/10.1038/nrg3871.
Article
CAS
PubMed
Google Scholar
Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367(14):1321–31. https://doi.org/10.1056/NEJMoa1200395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43(9):838–46. https://doi.org/10.1038/ng.909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontanesi L, Martelli PL, Beretti F, Riggio V, Dall’Olio S, Colombo M, et al. An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genomics. 2010;11(1):639. https://doi.org/10.1186/1471-2164-11-639.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nandolo W, Lamuno D, Banda L, Gondwe T, Mulindwa H, Nakimbugwe H, et al. Distribution of copy number variants in the genomes of east African goat breeds. In: Proceedings of the World Congress on Genetics Applied to Livestock Production. World Congress on Genetics Applied to Livestock Production; 2018. p. 470.
Google Scholar
Liu M, Zhou Y, Rosen BD, Van Tassell CP, Stella A, Tosser-Klopp G, et al. Diversity of copy number variation in the worldwide goat population. Heredity. 2019;122(5):636–46. https://doi.org/10.1038/s41437-018-0150-6.
Article
CAS
PubMed
Google Scholar
Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001;29(3):263–4. https://doi.org/10.1038/ng754.
Article
CAS
PubMed
Google Scholar
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45. https://doi.org/10.1038/nbt1486.
Article
CAS
PubMed
Google Scholar
Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics. 2013;14(Suppl 11):S1.
Article
PubMed
PubMed Central
Google Scholar
Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470(7332):59–65. https://doi.org/10.1038/nature09708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Chen G, Lima L, Fang H, Jimenez L, Li M, et al. HadoopCNV- A dynamic programming imputation algorithm to detect copy number variants from sequencing data. bioRxiv. 2017:124339. https://doi.org/10.1101/124339.
Fan X, Abbott TE, Larson D, Chen K. BreakDancer: identification of genomic structural variation from paired-end read mapping. In: Current protocols in bioinformatics. Hoboken: Wiley; 2014. p. 15.6.1–15.6.11.
Google Scholar
Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71. https://doi.org/10.1093/bioinformatics/btp394.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28(18):i333–9. https://doi.org/10.1093/bioinformatics/bts378.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 2009;10(1):80. https://doi.org/10.1186/1471-2105-10-80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21(6):974–84. https://doi.org/10.1101/gr.114876.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 2009;19(9):1586–92. https://doi.org/10.1101/gr.092981.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Layer RM, Chiang C, Quinlan AR, Hall IM, Quinlan AR. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 2014;15(6):R84. https://doi.org/10.1186/gb-2014-15-6-r84.
Article
PubMed
PubMed Central
Google Scholar
Pirooznia M, Goes F, Zandi PP. Whole-genome CNV analysis: Advances in computational approaches. Front Genet. 2015;6(MAR):138.
PubMed
PubMed Central
Google Scholar
Tattini L, D’Aurizio R, Magi A. Detection of genomic structural variants from next-generation sequencing data. Front Bioeng Biotechnol. 2015;3:92.
Article
PubMed
PubMed Central
Google Scholar
Ye K, Hall G, G H KY. Structural Variation Detection from Next Generation Sequencing. J Gener Seq Appl. 2015. https://doi.org/10.4172/2469-9853.S1-007.
Guan P, Sung WK. Structural variation detection using next-generation sequencing data: a comparative technical review. Methods. 2016;102:36–49. https://doi.org/10.1016/j.ymeth.2016.01.020.
Article
CAS
PubMed
Google Scholar
Liu B, Conroy JM, Morrison CD, Odunsi AO, Qin M, Wei L, et al. Structural variation discovery in the cancer genome using next generation sequencing: computational solutions and perspectives. Oncotarget. 2015;6(8):5477–89. https://doi.org/10.18632/oncotarget.3491.
Article
PubMed
PubMed Central
Google Scholar
Arthur JG, Chen X, Zhou B, Urban AE, Wong WH. Detection of complex structural variation from paired-end sequencing data. bioRxiv. 2018:200170. https://doi.org/10.1101/200170.
Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220–2. https://doi.org/10.1093/bioinformatics/btv710.
Article
CAS
PubMed
Google Scholar
Bickhart DM, Liu GE, Eichler EE, Matukumalli LK, Song J, Van Tassell CP, et al. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res. 2012;22(4):778–90. https://doi.org/10.1101/gr.133967.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Genova F, Longeri M, Lyons LAA, Bagnato A, Gandolfi B, Aberdein D, et al. First genome-wide CNV mapping in FELIS CATUS using next generation sequencing data. BMC Genomics. 2018;19:1–2.
Article
Google Scholar
Sohrabi SS, Mohammadabadi M, Wu D-D, Esmailizadeh A. Detection of breed-specific copy number variations in domestic chicken genome. Genome. 2018;61(1):7–14. https://doi.org/10.1139/gen-2017-0016.
Article
CAS
PubMed
Google Scholar
Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10(1):e1004016. https://doi.org/10.1371/journal.pgen.1004016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stella A, Nicolazzi EL, Van Tassell CP, Rothschild MF, Colli L, Rosen BD, et al. AdaptMap: exploring goat diversity and adaptation. Genet Sel Evol. 2018;50(1):61. https://doi.org/10.1186/s12711-018-0427-5.
Article
PubMed
PubMed Central
Google Scholar
Teo SM, Pawitan Y, Ku CS, Chia KS, Salim A. Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics. 2012;28(21):2711–8. https://doi.org/10.1093/bioinformatics/bts535.
Article
CAS
PubMed
Google Scholar
Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 2019;20(1):117. https://doi.org/10.1186/s13059-019-1720-5.
Article
PubMed
PubMed Central
Google Scholar
Neupane M, Hoff JL, Taylor JF, Seabury CM, Womack JE, Bovine T, et al. Refinement of the DST locus associated with bovine respiratory disease complex in Holstein calves. J Anim Sci. 2016;94(suppl_5):361.
Article
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van De Weijer ML, Bassik MC, Luteijn RD, Voorburg CM, Lohuis MAM, Kremmer E, et al. A high-coverage shrna screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat Commun. 2014;5(1):3832. https://doi.org/10.1038/ncomms4832.
Article
CAS
PubMed
Google Scholar
Van De Weijer ML, Van Muijlwijk GH, Visser LJ, Costa AI, Wiertz EJHJ, Lebbink RJ. The E3 ubiquitin ligase TMEM129 is a tri-spanning transmembrane protein. Viruses. 2016;8:309.
Article
PubMed Central
Google Scholar
van den Boomen DJH, Timms RT, Grice GL, Stagg HR, Skodt K, Dougan G, et al. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proc Natl Acad Sci. 2014;111(31):11425–30. https://doi.org/10.1073/pnas.1409099111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu F, Shen XY, Fan L, Yu ZC. Genome-wide analysis of genetic variations assisted by Ingenuity Pathway Analysis to comprehensively investigate potential genetic targets associated with the progression of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 2014;18:2102.
CAS
PubMed
Google Scholar
Wang K, Hadley D, Liu R, Bucan M, Li M, Glessner J, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17(11):1665–74. https://doi.org/10.1101/gr.6861907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stothard P, Choi JW, Basu U, Sumner-Thomson JM, Meng Y, Liao X, et al. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics. 2011;12(1):559. https://doi.org/10.1186/1471-2164-12-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bickhart DM, Xu L, Hutchison JL, Cole JB, Null DJ, Schroeder SG, et al. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Res. 2016;23(3):253–62. https://doi.org/10.1093/dnares/dsw013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Våge DI, Boman IA. A nonsense mutation in the beta-carotene oxygenase 2 (BCO2) gene is tightly associated with accumulation of carotenoids in adipose tissue in sheep (Ovis aries). BMC Genet. 2010;11(1):10. https://doi.org/10.1186/1471-2156-11-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borowska A, Szwaczkowski T, Kamiński S, Hering DM, Kordan W, Lecewicz M. Identification of genome regions determining semen quality in Holstein-Friesian bulls using information theory. Anim Reprod Sci. 2018;192:206–15. https://doi.org/10.1016/j.anireprosci.2018.03.012.
Article
CAS
PubMed
Google Scholar
Lirón JP, Prando AJ, Fernández ME, Ripoli MV, Rogberg-Muñoz A, Goszczynski DE, et al. Association between GNRHR, LHR and IGF1 polymorphisms and timing of puberty in male Angus cattle. BMC Genet. 2012;13(1):26. https://doi.org/10.1186/1471-2156-13-26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang J, Ma L, Prakapenka D, VanRaden PM, Cole JB, Da Y. A large-scale genome-wide association study in U.S. Holstein cattle. Front Genet. 2019;10(MAY):412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuen WY, Pasmooij AMG, Stellingsma C, Jonkman MF. Enamel defects in carriers of a novel LAMA3 mutation underlying epidermolysis bullosa. Acta Derm Venereol. 2012;92(6):695–6. https://doi.org/10.2340/00015555-1341.
Article
CAS
PubMed
Google Scholar
Onouchi Y. Genetics of Kawasaki disease: - what we know and don’t know. Circ J. 2012;76(7):1581–6. https://doi.org/10.1253/circj.CJ-12-0568.
Article
CAS
PubMed
Google Scholar
Okada J, Yamada E, Saito T, Ozawa A, Nakajima Y, Pessin JE, et al. Analysis of FAM19A2/TAFA-2 function. Physiol Behav. 2019;208:112581. https://doi.org/10.1016/j.physbeh.2019.112581.
Article
CAS
PubMed
Google Scholar
Yamano K, Matsuda N, Tanaka K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 2016;17(3):300–16. https://doi.org/10.15252/embr.201541486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76(1):70–81. https://doi.org/10.1016/j.neuron.2012.09.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basavarajappa BS. The endocannabinoid signaling system: a potential target for next-generation therapeutics for alcoholism. Mini Rev Med Chem. 2007;7(8):769–79. https://doi.org/10.2174/138955707781387920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishiguro H, Leonard CM, Sgro S, Onaivi ES. Cannabinoid receptor gene variations in neuropsychiatric disorders. In: Murillo-Rodríguez E, editor. Endocannabinoids: molecular, pharmacological, behavioral and clinical features. 1st ed. Baltimore: Bentham Science Publishers; 2013. p. 3–24. https://doi.org/10.2174/9781608050284113010006.
Chapter
Google Scholar
Zajkowska ZE, Englund A, Zunszain PA. Towards a personalized treatment in depression: endocannabinoids, inflammation and stress response. Pharmacogenomics. 2014;15(5):687–98. https://doi.org/10.2217/pgs.14.40.
Article
CAS
PubMed
Google Scholar
Silanikove N. The physiological basis of adaptation in goats to harsh environments. Small Rumin Res. 2000;35(3):181–93. https://doi.org/10.1016/S0921-4488(99)00096-6.
Article
Google Scholar
Piccione G, Giannetto C, Casella S, Caola G. Seasonal change of daily motor activity rhythms in Capra hircus. Can J Anim Sci. 2008;88(3):351–5. https://doi.org/10.4141/CJAS07125.
Article
Google Scholar
Malan SW. The improved Boer goat. Small Rumin Res. 2000;36(2):165–70. https://doi.org/10.1016/S0921-4488(99)00160-1.
Article
CAS
PubMed
Google Scholar
Tosser-Klopp G, Bardou P, Bouchez O, Cabau C, Crooijmans R, Dong Y, et al. Design and characterization of a 52K SNP chip for goats. PLoS One. 2014;9(1):e86227. https://doi.org/10.1371/journal.pone.0086227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertolini F, Cardoso TF, Marras G, Nicolazzi EL, Rothschild MF, Amills M. Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats. Genet Sel Evol. 2018;50(1):59. https://doi.org/10.1186/s12711-018-0424-8.
Article
PubMed
PubMed Central
Google Scholar
Cardoso TF, Amills M, Bertolini F, Rothschild M, Marras G, Boink G, et al. Patterns of homozygosity in insular and continental goat breeds. Genet Sel Evol. 2018;50:1–11.
Article
Google Scholar
Colli L, Milanesi M, Talenti A, Bertolini F, Chen M, Crisà A, et al. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet Sel Evol. 2018;50(1):58. https://doi.org/10.1186/s12711-018-0422-x.
Article
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26(5):589–95. https://doi.org/10.1093/bioinformatics/btp698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet. 2017;49(4):643–50. https://doi.org/10.1038/ng.3802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faust GG, Hall IM. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics. 2014;30(17):2503–5. https://doi.org/10.1093/bioinformatics/btu314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods. 2015;12(10):966–8. https://doi.org/10.1038/nmeth.3505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larson DE, Abel HJ, Chiang C, Badve A, Das I, Eldred JM, et al. Svtools: Population-Scale Analysis of Structural Variation. Bioinformatics. 2019;35:4782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu GE, Bickhart DM. Copy number variation in the cattle genome. Funct Integr Genomics. 2012;12(4):609–24. https://doi.org/10.1007/s10142-012-0289-9.
Article
CAS
PubMed
Google Scholar
R Development Core team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for statistical Computing; 2016.
Google Scholar
Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2. https://doi.org/10.1093/bioinformatics/btu393.
Article
CAS
PubMed
Google Scholar
Liu X, Li A, Xi J, Feng H, Wang M. Detection of copy number variants and loss of heterozygosity from impure tumor samples using whole exome sequencing data. Oncol Lett. 2018;16(4):4713–20. https://doi.org/10.3892/ol.2018.9150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cridland JM, Macdonald SJ, Long AD, Thornton KR. Abundance and distribution of transposable elements in two drosophila QTL mapping resources. Mol Biol Evol. 2013;30(10):2311–27. https://doi.org/10.1093/molbev/mst129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers RL, Cridland JM, Shao L, Hu TT, Andolfatto P, Thornton KR. Landscape of standing variation for tandem duplications in drosophila yakuba and drosophila simulans. Mol Biol Evol. 2014;31(7):1750–66. https://doi.org/10.1093/molbev/msu124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8. https://doi.org/10.1038/nmeth.1226.
Article
CAS
PubMed
Google Scholar
Wang X, Zheng Z, Cai Y, Chen T, Li C, Fu W, et al. CNVcaller: highly efficient and widely applicable software for detecting copy number variations in large populations. GigaScience. 2017;6(12):1–12. https://doi.org/10.1093/gigascience/gix115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dennis G, Sherman B, Hosack D, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3. https://doi.org/10.1186/gb-2003-4-5-p3.
Article
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. https://doi.org/10.1093/nar/gkn923.
Article
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.
Article
CAS
Google Scholar