Butler W, Everett R, Coppock C. The relationships between energy balance, milk production and ovulation in postpartum Holstein cows. J Anim Sci. 1981;53(3):742–8. https://doi.org/10.2527/jas1981.533742x.
Article
CAS
PubMed
Google Scholar
Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, Hutjens MF, et al. Invited review: learning from the future—a vision for dairy farms and cows in 2067. J Dairy Sci. 2018;101(5):3722–41. https://doi.org/10.3168/jds.2017-14025.
Article
CAS
PubMed
Google Scholar
Harrison R, Ford S, Young J, Conley A, Freeman A. Increased milk production versus reproductive and energy status of high producing dairy cows1. J Dairy Sci. 1990;73(10):2749–58. https://doi.org/10.3168/jds.S0022-0302(90)78960-6.
Article
CAS
PubMed
Google Scholar
Butler WR. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livest Prod Sci. 2003;83(2-3):211–8. https://doi.org/10.1016/S0301-6226(03)00112-X.
Article
Google Scholar
Barbat A, Le Mezec P, Ducrocq V, Mattalia S, Fritz S, Boichard D, et al. Female fertility in French dairy breeds: current situation and strategies for improvement. J Reprod Dev. 2010;56(S):S15–21. https://doi.org/10.1262/jrd.1056S15.
Article
PubMed
Google Scholar
Grummer RR, Mashek DG, Hayirli A. Dry matter intake and energy balance in the transition period. Vet Clin Food Anim Pract. 2004;20(3):447–70. https://doi.org/10.1016/j.cvfa.2004.06.013.
Article
Google Scholar
Senatore E, Butler W, Oltenacu P. Relationships between energy balance and post-partum ovarian activity and fertility in first lactation dairy cows. Anim Sci. 1996;62(1):17–23. https://doi.org/10.1017/S1357729800014260.
Article
Google Scholar
Swangchan-Uthai T, Chen QS, Kirton SE, Fenwick MA, Cheng ZR, Patton J, et al. Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow. Reproduction. 2013;145(5):527–39. https://doi.org/10.1530/REP-12-0513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butler W, Smith R. Interrelationships between energy balance and postpartum reproductive function in dairy cattle. J Dairy Sci. 1989;72(3):767–83. https://doi.org/10.3168/jds.S0022-0302(89)79169-4.
Article
CAS
PubMed
Google Scholar
Esposito G, Irons PC, Webb EC, Chapwanya A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim Reprod Sci. 2014;144(3–4):60–71. https://doi.org/10.1016/j.anireprosci.2013.11.007.
Article
CAS
PubMed
Google Scholar
Leroy JL, De Bie J, Jordaens L, Desmet K, Smits A, Marei WF, et al. Negative energy balance and metabolic stress in relation to oocyte and embryo quality: an update on possible pathways reducing fertility in dairy cows. Anim Reprod. 2017;14:497–506.
Article
Google Scholar
Wathes DC, Cheng ZR, Chowdhury W, Fenwick MA, Fitzpatrick R, Morris DG, et al. Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows. Physiol Genomics. 2009;39(1):1–13. https://doi.org/10.1152/physiolgenomics.00064.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wathes DC, Clempson AM, Pollott GE. Associations between lipid metabolism and fertility in the dairy cow. Reprod Fert Develop. 2013;25(1):48–61. https://doi.org/10.1071/RD12272.
Article
CAS
Google Scholar
Bauersachs S, Simintiras CA, Sturmey RG, Krebs S, Bick J, Blum H, et al. Effect of metabolic status on conceptus-maternal interactions on day 19 in dairy cattle: II. Effects on the endometrial transcriptome. Biol Reprod. 2017;97(3):413–25. https://doi.org/10.1093/biolre/iox095.
Article
PubMed
Google Scholar
Cerri RL, Thompson IM, Kim IH, Ealy AD, Hansen PJ, Staples CR, et al. Effects of lactation and pregnancy on gene expression of endometrium of Holstein cows at day 17 of the estrous cycle or pregnancy. J Dairy Sci. 2012;95(10):5657–75. https://doi.org/10.3168/jds.2011-5114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson IM, Cerri RL, Kim IH, Ealy AD, Hansen PJ, Staples CR, et al. Effects of lactation and pregnancy on metabolic and hormonal responses and expression of selected conceptus and endometrial genes of Holstein dairy cattle. J Dairy Sci. 2012;95(10):5645–56. https://doi.org/10.3168/jds.2011-5113.
Article
CAS
PubMed
Google Scholar
Chankeaw W, Guo Y, Båge R, Svensson A, Andersson G, Humblot P. Elevated non-esterified fatty acids impair survival and promote lipid accumulation and pro-inflammatory cytokine production in bovine endometrial epithelial cells. Reproduction, Fertility and Development; 2018.
Book
Google Scholar
Ohtsu A, Tanaka H, Seno K, Iwata H, Kuwayama T, Shirasuna K. Palmitic acid stimulates interleukin-8 via the TLR4/NF-κB/ROS pathway and induces mitochondrial dysfunction in bovine oviduct epithelial cells. Am J Reprod Immunol. 2017;77(6):e12642. https://doi.org/10.1111/aji.12642.
Article
CAS
Google Scholar
Marchi T, Braakman RBH, Stingl C, Duijn MM, Smid M, Foekens JA, et al. The advantage of laser-capture microdissection over whole tissue analysis in proteomic profiling studies. PROTEOMICS. 2016;16(10):1474–85. https://doi.org/10.1002/pmic.201600004.
Article
CAS
PubMed
Google Scholar
Martin L, Finn C. Hormonal regulation of cell division in epithelial and connective tissues of the mouse uterus. J Endocrinol. 1968;41(3):363–71. https://doi.org/10.1677/joe.0.0410363.
Article
CAS
PubMed
Google Scholar
Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G. Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations†. Biol Reprod. 2018;99(1):225–41. https://doi.org/10.1093/biolre/ioy047.
Article
PubMed
PubMed Central
Google Scholar
Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, et al. Developmental biology of uterine glands. Biol Reprod. 2001;65(5):1311–23. https://doi.org/10.1095/biolreprod65.5.1311.
Article
CAS
PubMed
Google Scholar
Forde N, Lonergan P. Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle? J Reprod Dev. 2012;58(2):189–95. https://doi.org/10.1262/jrd.2011-021.
Article
CAS
PubMed
Google Scholar
Fortier M, Guilbault L, Grasso F. Specific properties of epithelial and stromal cells from the endometrium of cows. J Reprod Fertil. 1988;83(1):239–48. https://doi.org/10.1530/jrf.0.0830239.
Article
CAS
PubMed
Google Scholar
Schaefer TM, Desouza K, Fahey JV, Beagley KW, Wira CR. Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells. Immunology. 2004;112(3):428–36. https://doi.org/10.1111/j.1365-2567.2004.01898.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niklaus AL, Pollard JW. Mining the mouse transcriptome of receptive endometrium reveals distinct molecular signatures for the luminal and glandular epithelium. Endocrinology. 2006;147(7):3375–90. https://doi.org/10.1210/en.2005-1665.
Article
CAS
PubMed
Google Scholar
Gray CA, Taylor KM, Ramsey WS, Hill JR, Bazer FW, Bartol FF, et al. Endometrial glands are required for preimplantation conceptus elongation and survival. Biol Reprod. 2001;64(6):1608–13. https://doi.org/10.1095/biolreprod64.6.1608.
Article
CAS
PubMed
Google Scholar
Demir R, Kayisli U, Celik-Ozenci C, Korgun E, Demir-Weusten A, Arici A. Structural differentiation of human uterine luminal and glandular epithelium during early pregnancy: an ultrastructural and immunohistochemical study. Placenta. 2002;23(8–9):672–84. https://doi.org/10.1053/plac.2002.0841.
Article
CAS
PubMed
Google Scholar
Fazleabas A, Bazer F, Roberts RM. Purification and properties of a progesterone-induced plasmin/trypsin inhibitor from uterine secretions of pigs and its immunocytochemical localization in the pregnant uterus. J Biol Chem. 1982;257(12):6886–97. https://doi.org/10.1016/S0021-9258(18)34513-7.
Article
CAS
PubMed
Google Scholar
Scaravaggi I, Borel N, Romer R, Imboden I, Ulbrich SE, Zeng S, et al. Cell type-specific endometrial transcriptome changes during initial recognition of pregnancy in the mare. Reproduction, fertility and development; 2018.
Google Scholar
Hood BL, Liu B, Alkhas A, Shoji Y, Challa R, Wang G, et al. Proteomics of the human endometrial glandular epithelium and stroma from the proliferative and secretory phases of the menstrual cycle1. Biol Reprod. 2015;92(4):106, 101-108-106, 101-108. https://doi.org/10.1095/biolreprod.114.127217.
Article
CAS
Google Scholar
Brooks K, Burns GW, Moraes JG, Spencer TE. Analysis of the uterine epithelial and conceptus transcriptome and luminal fluid proteome during the peri-implantation period of pregnancy in sheep. Biol Reprod. 2016;95(4):88. https://doi.org/10.1095/biolreprod.116.141945.
Article
CAS
PubMed
Google Scholar
Chankeaw W, Lignier S, Richard C, Ntallaris T, Raliou M, G. Y, et al. Analysis of the transcriptome of bovine endometrial cells isolated by laser micro-dissection (1): specific signatures of stromal, glandular and luminal epithelial cells. BMC Genomics. 2021; https://doi.org/10.1186/s12864-021-07712-0.
Adewuyi AA, Gruys E, van Eerdenburg FJ. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet Q. 2005;27(3):117–26. https://doi.org/10.1080/01652176.2005.9695192.
Article
CAS
PubMed
Google Scholar
Ntallaris T, Humblot P, Bage R, Sjunnesson Y, Dupont J, Berglund B. Effect of energy balance profiles on metabolic and reproductive response in Holstein and Swedish red cows. Theriogenology. 2017;90:276–83. https://doi.org/10.1016/j.theriogenology.2016.12.012.
Article
CAS
PubMed
Google Scholar
Butler ST, Marr AL, Pelton SH, Radcliff RP, Lucy MC, Butler WR. Insulin restores GH responsiveness during lactation-induced negative energy balance in dairy cattle: effects on expression of IGF-I and GH receptor 1A. J Endocrinol. 2003;176(2):205–17. https://doi.org/10.1677/joe.0.1760205.
Article
CAS
PubMed
Google Scholar
Jorritsma R, Cesar ML, Hermans JT, Kruitwagen CL, Vos PL, Kruip TA. Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro. Anim Reprod Sci. 2004;81(3–4):225–35. https://doi.org/10.1016/j.anireprosci.2003.10.005.
Article
CAS
PubMed
Google Scholar
Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, et al. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One. 2011;6(8):e23183. https://doi.org/10.1371/journal.pone.0023183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fenwick MA, Llewellyn S, Fitzpatrick R, Kenny DA, Murphy JJ, Patton J, et al. Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct. Reproduction. 2008;135(1):63–75. https://doi.org/10.1530/REP-07-0243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wathes DC, Cheng Z, Fenwick MA, Fitzpatrick R, Patton J. Influence of energy balance on the somatotrophic axis and matrix metalloproteinase expression in the endometrium of the postpartum dairy cow. Reproduction. 2011;141(2):269–81. https://doi.org/10.1530/REP-10-0177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moran B, Butler ST, Moore SG, MacHugh DE, Creevey CJ. Differential gene expression in the endometrium reveals cytoskeletal and immunological genes in lactating dairy cows genetically divergent for fertility traits. Reprod Fertil Dev. 2017;29(2):274–82. https://doi.org/10.1071/RD15128.
Article
CAS
PubMed
Google Scholar
Kimmins S, MacLaren LA. Cyclic modulation of integrin expression in bovine endometrium. Biol Reprod. 1999;61(5):1267–74. https://doi.org/10.1095/biolreprod61.5.1267.
Article
CAS
PubMed
Google Scholar
Lessey BA, Castelbaum AJ, Buck CA, Lei Y, Yowell CW, Sun J. Further characterization of endometrial integrins during the menstrual cycle and in pregnancy. Fertil Steril. 1994;62(3):497–506. https://doi.org/10.1016/S0015-0282(16)56937-4.
Article
CAS
PubMed
Google Scholar
Chen G, Xin A, Liu Y, Shi C, Chen J, Tang X, et al. Integrins β1 and β3 are biomarkers of uterine condition for embryo transfer. J Transl Med. 2016;14(1):303. https://doi.org/10.1186/s12967-016-1052-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spencer TE, Bazer FW. Uterine and placental factors regulating conceptus growth in domestic animals. J Anim Sci. 2004;82(E-Suppl):E4–13.
PubMed
Google Scholar
Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12(6):731–46. https://doi.org/10.1093/humupd/dml004.
Article
PubMed
Google Scholar
Killeen AP, Diskin MG, Morris DG, Kenny DA, Waters SM. Endometrial gene expression in high-and low-fertility heifers in the late luteal phase of the estrous cycle and a comparison with midluteal gene expression. Physiol Genomics. 2016;48(4):306–19. https://doi.org/10.1152/physiolgenomics.00042.2015.
Article
CAS
PubMed
Google Scholar
Cooke PS, Spencer TE, Bartol FF, Hayashi K. Uterine glands: development, function and experimental model systems. Mol Hum Reprod. 2013;19(9):547–58. https://doi.org/10.1093/molehr/gat031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filant J, Spencer TE. Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization. Int J Dev Biol. 2014;58(2–4):107–16. https://doi.org/10.1387/ijdb.130344ts.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod. 2010;16(3):135–52. https://doi.org/10.1093/molehr/gap095.
Article
CAS
PubMed
Google Scholar
Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82(1):131–85. https://doi.org/10.1152/physrev.00021.2001.
Article
CAS
PubMed
Google Scholar
Bionaz M, Loor JJ. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J Nutr. 2008;138(6):1019–24. https://doi.org/10.1093/jn/138.6.1019.
Article
CAS
PubMed
Google Scholar
Chen W, Chang B, Wu X, Li L, Sleeman M, Chan L. Inactivation of Plin4 downregulates Plin5 and reduces cardiac lipid accumulation in mice. Am J Physiol Endocrinol Metab. 2013;304(7):E770–9. https://doi.org/10.1152/ajpendo.00523.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itabe H, Yamaguchi T, Nimura S, Sasabe N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis. 2017;16(1):83. https://doi.org/10.1186/s12944-017-0473-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker CG, Littlejohn MD, Mitchell MD, Roche JR, Meier S. Endometrial gene expression during early pregnancy differs between fertile and subfertile dairy cow strains. Physiol Genomics. 2012;44(1):47–58. https://doi.org/10.1152/physiolgenomics.00254.2010.
Article
CAS
PubMed
Google Scholar
Llewellyn S, Fitzpatrick R, Kenny DA, Patton J, Wathes DC. Endometrial expression of the insulin-like growth factor system during uterine involution in the postpartum dairy cow. Domest Anim Endocrinol. 2008;34(4):391–402. https://doi.org/10.1016/j.domaniend.2007.11.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, He J, Chen X, Ding Y, Wang Y, Long C, et al. Mmu-miR-193 is involved in embryo implantation in mouse uterus by regulating GRB7 gene expression. Reprod Sci. 2014;21(6):733–42. https://doi.org/10.1177/1933719113512535.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooke FN, Pennington KA, Yang Q, Ealy AD. Several fibroblast growth factors are expressed during pre-attachment bovine conceptus development and regulate interferon-tau expression from trophectoderm. Reproduction. 2009;137(2):259–69. https://doi.org/10.1530/REP-08-0396.
Article
CAS
PubMed
Google Scholar
Tan J, Raja S, Davis MK, Tawfik O, Dey SK, Das SK. Evidence for coordinated interaction of cyclin D3 with p21 and cdk6 in directing the development of uterine stromal cell decidualization and polyploidy during implantation. Mech Dev. 2002;111(1–2):99–113. https://doi.org/10.1016/S0925-4773(01)00614-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell. 2002;109(Suppl):S121–31. https://doi.org/10.1016/S0092-8674(02)00701-8.
Article
CAS
PubMed
Google Scholar
Wira CR, Grant-Tschudy KS, Crane-Godreau MA. Epithelial cells in the female reproductive tract: a central role as sentinels of immune protection. Am J Reprod Immunol. 2005;53(2):65–76. https://doi.org/10.1111/j.1600-0897.2004.00248.x.
Article
CAS
PubMed
Google Scholar
Du MR, Wang SC, Li DJ. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell Mol Immunol. 2014;11(5):438–48. https://doi.org/10.1038/cmi.2014.68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shankar K, Zhong Y, Kang P, Lau F, Blackburn ML, Chen JR, et al. Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst. Endocrinology. 2011;152(11):4158–70. https://doi.org/10.1210/en.2010-1078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konner AC, Bruning JC. Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol Metab. 2011;22(1):16–23. https://doi.org/10.1016/j.tem.2010.08.007.
Article
CAS
PubMed
Google Scholar
Graugnard DE, Moyes KM, Trevisi E, Khan MJ, Keisler D, Drackley JK, et al. Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. J Dairy Sci. 2013;96(2):918–35. https://doi.org/10.3168/jds.2012-5676.
Article
CAS
PubMed
Google Scholar
Lopez-Meza JE, Gutierrez-Barroso A, Ochoa-Zarzosa A. Expression of tracheal antimicrobial peptide in bovine mammary epithelial cells. Res Vet Sci. 2009;87(1):59–63. https://doi.org/10.1016/j.rvsc.2008.12.005.
Article
CAS
PubMed
Google Scholar
Thatcher WW, Guzeloglu A, Mattos R, Binelli M, Hansen TR, Pru JK. Uterine-conceptus interactions and reproductive failure in cattle. Theriogenology. 2001;56(9):1435–50. https://doi.org/10.1016/S0093-691X(01)00645-8.
Article
CAS
PubMed
Google Scholar
Spencer TE, Johnson GA, Bazer FW, Burghardt RC. Fetal-maternal interactions during the establishment of pregnancy in ruminants. Soc Reprod Fertil Suppl. 2007;64:379–96. https://doi.org/10.5661/rdr-vi-379.
Article
CAS
PubMed
Google Scholar
Khan-Dawood FS, Yang J, Dawood MY. Hormonal regulation of connexin-43 in baboon corpora lutea. J Endocrinol. 1998;157(3):405–14. https://doi.org/10.1677/joe.0.1570405.
Article
CAS
PubMed
Google Scholar
Blanks AM, Shmygol A, Thornton S. Regulation of oxytocin receptors and oxytocin receptor signaling. Semin Reprod Med. 2007;25(1):52–9. https://doi.org/10.1055/s-2006-956775.
Article
CAS
PubMed
Google Scholar
Arosh JA, Parent J, Chapdelaine P, Sirois J, Fortier MA. Expression of cyclooxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the estrous cycle. Biol Reprod. 2002;67(1):161–9. https://doi.org/10.1095/biolreprod67.1.161.
Article
CAS
PubMed
Google Scholar
Seo H, Choi Y, Yu I, Shim J, Lee CK, Hyun SH, et al. Analysis of ENPP2 in the uterine endometrium of pigs carrying somatic cell nuclear transfer cloned embryos. Asian-Australas J Anim Sci. 2013;26(9):1255–61. https://doi.org/10.5713/ajas.2013.13158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simon C, Frances A, Piquette GN, el Danasouri I, Zurawski G, Dang W, et al. Embryonic implantation in mice is blocked by interleukin-1 receptor antagonist. Endocrinology. 1994;134(2):521–8. https://doi.org/10.1210/endo.134.2.8299552.
Article
CAS
PubMed
Google Scholar
Krebs DL, Hilton DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells. 2001;19(5):378–87. https://doi.org/10.1634/stemcells.19-5-378.
Article
CAS
PubMed
Google Scholar
Carvalho AV, Reinaud P, Forde N, Healey GD, Eozenou C, Giraud-Delville C, et al. SOCS genes expression during physiological and perturbed implantation in bovine endometrium. Reproduction. 2014;148(6):545–57. https://doi.org/10.1530/REP-14-0214.
Article
CAS
PubMed
Google Scholar
Yue ZP, Yang ZM, Wei P, Li SJ, Wang HB, Tan JH, et al. Leukemia inhibitory factor, leukemia inhibitory factor receptor, and glycoprotein 130 in rhesus monkey uterus during menstrual cycle and early pregnancy. Biol Reprod. 2000;63(2):508–12. https://doi.org/10.1095/biolreprod63.2.508.
Article
CAS
PubMed
Google Scholar
Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO. Defining postpartum uterine disease in cattle. Theriogenology. 2006;65(8):1516–30. https://doi.org/10.1016/j.theriogenology.2005.08.021.
Article
PubMed
Google Scholar
Kasimanickam R, Duffield TF, Foster RA, Gartley CJ, Leslie KE, Walton JS, et al. Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology. 2004;62(1–2):9–23. https://doi.org/10.1016/j.theriogenology.2003.03.001.
Article
CAS
PubMed
Google Scholar
Johnson S, Funston R, Hall J, Lamb G, Lauderdale J, Patterson D, Perry G. Protocols for synchronization of estrus and ovulation. Proceedings Applied Reproductive Strategies in Beef Cattle San Antonio, TX. 2010.
Google Scholar
Edmonson A, Lean I, Weaver L, Farver T, Webster G. A body condition scoring chart for Holstein dairy cows. J Dairy Sci. 1989;72(1):68–78. https://doi.org/10.3168/jds.S0022-0302(89)79081-0.
Article
Google Scholar
Bevilacqua C, Makhzami S, Helbling J-C, Defrenaix P, Martin P. Maintaining RNA integrity in a homogeneous population of mammary epithelial cells isolated by laser capture microdissection. BMC Cell Biol. 2010;11(1):95. https://doi.org/10.1186/1471-2121-11-95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Anders S, Kim V, Huber W. RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Res. 2015;4:1070.
Article
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9. https://doi.org/10.1038/nmeth.4197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.
Article
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.
Article
CAS
PubMed
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10. https://doi.org/10.1093/nar/30.1.207.
Article
CAS
PubMed
PubMed Central
Google Scholar