Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5(8):606–16. https://doi.org/10.1038/nri1669.
Article
PubMed
CAS
Google Scholar
Lewis SM, Williams A, Eisenbarth SC. Structure-function of the immune system in the spleen. Sci Immunol. 2019;4(33):eaau6085. https://doi.org/10.1126/sciimmunol.aau6085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lauda E, Haam E. Importance of the spleen as a reservoir for red blood cells. Exp Biol Med. 1931;29(3):260–2. https://doi.org/10.3181/00379727-29-5829.
Article
Google Scholar
Potocnik S, Wintour E. Development of the spleen as a red blood cell reservoir in lambs. Reprod Fertil Dev. 1996;8(3):311. https://doi.org/10.1071/RD9960311.
Article
PubMed
CAS
Google Scholar
Short C, Lim HK, Tan J, O’Neill HC. Targeting the spleen as an alternative site for hematopoiesis. BioEssays. 2019;41(5):1800234. https://doi.org/10.1002/bies.201800234.
Article
Google Scholar
Socolovsky M. Molecular insights into stress erythropoiesis. Curr Opin Hematol. 2007;14(3):215–24. https://doi.org/10.1097/MOH.0b013e3280de2bf1.
Article
PubMed
Google Scholar
Inra CN, Zhou BO, Acar M, Murphy MM, Richardson J, Zhao Z, et al. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature. 2015;527(7579):466–71. https://doi.org/10.1038/nature15530.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sonmez G, Ozturk E, Basekim CC, Mutlu H, Kilic S, Onem Y, et al. Effects of altitude on spleen volume: Sonographic assessment. J Clin Ultrasound. 2007;35(4):182–5. https://doi.org/10.1002/jcu.20346.
Article
PubMed
Google Scholar
Purdy GM, James MA, Rees JL, Ondrus P, Keess JL, Day TA, et al. Spleen reactivity during incremental ascent to altitude. J Appl Physiol. 2019;126(1):152–9. https://doi.org/10.1152/japplphysiol.00753.2018.
Article
PubMed
CAS
Google Scholar
Holmström P, Mulder E, Starfelt V, Lodin-Sundström A, Schagatay E. Spleen size and function in Sherpa living high, Sherpa Living Low and Nepalese Lowlanders. Front Physiol. 2020;11:647.
Article
PubMed
PubMed Central
Google Scholar
Schagatay E, Holmström P, Mulder E, Limbu P, Schagatay FS, Engan H, et al. Spleen volume and contraction during apnea in Mt. Everest climbers and Everest Base camp trekkers. High Alt Med Biol. 2020;21(1):84–91. https://doi.org/10.1089/ham.2019.0028.
Article
PubMed
CAS
Google Scholar
Cook SF, Alafi MH. Role of the spleen in acclimatization to hypoxia. Am J Physiology-Legacy Content. 1956;186(2):369–72. https://doi.org/10.1152/ajplegacy.1956.186.2.369.
Article
CAS
Google Scholar
Clegg EJ. Morphometric studies of the spleen of the hypoxic mouse. J Microsc. 1983;131(2):155–61. https://doi.org/10.1111/j.1365-2818.1983.tb04242.x.
Article
PubMed
CAS
Google Scholar
Dalton AJ, Jones BF. Organ Changes in Rats Exposed Repeatedly to Lowered Oxygen Tension with Reduced Barometric Pressure. J Natl Cancer Inst. 1945. https://doi.org/10.1093/jnci/6.3.161.
Turner MS, Hurst JM, Yoffey JM. Viii. Effect of hypoxia and post-hypoxic polycythaemia (rebound) on mouse marrow and spleen. Br J Haematol. 1967;13:942–8.
Article
CAS
PubMed
Google Scholar
Stutte HJ, Sakuma T, Falk S, Schneider M. Splenic erythropoiesis in rats under hypoxic and post-hypoxic conditions. Vichows Archiv A Pathol Anat. 1986;409(2):251–61. https://doi.org/10.1007/BF00708332.
Article
CAS
Google Scholar
Rapp JP, Christian JJ. Splenic Extramedullary hematopoiesis in grouped male mice. Exp Biol Med. 1963;114:26–8.
Article
CAS
Google Scholar
Paulson RF, Hariharan S, Little JA. Stress erythropoiesis: definitions and models for its study. Exp Hematol. 2020;89:43–54.e2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harada T, Tsuboi I, Hirabayashi Y, Kosaku K, Naito M, Hara H, et al. Decreased “ineffective erythropoiesis” preserves polycythemia in mice under long-term hypoxia. Clin Exp Med. 2015;15(2):179–88. https://doi.org/10.1007/s10238-014-0286-5.
Article
PubMed
CAS
Google Scholar
Millot S, Andrieu V, Letteron P, Lyoumi S, Hurtado-Nedelec M, Karim Z, et al. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood. 2010;116:6072–81.
Article
CAS
PubMed
Google Scholar
Lenox LE, Perry JM, Paulson RF. BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood. 2005;105:2741–8.
Article
CAS
PubMed
Google Scholar
Perry JM, Harandi OF, Porayette P, Hegde S, Kannan AK, Paulson RF. Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signaling. Blood. 2009;113:911–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood. 2007;109:4494–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu D-C, Paulson RF. Hypoxia regulates BMP4 expression in the murine spleen during the recovery from acute Anemia. PLoS One. 2010;5(6):e11303. https://doi.org/10.1371/journal.pone.0011303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518–28. https://doi.org/10.1016/j.immuni.2014.09.008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bennett LF, Liao C, Quickel MD, Yeoh BS, Vijay-Kumar M, Hankey-Giblin P, et al. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C. Sci Signal. 2019;12(598):eaap7336. https://doi.org/10.1126/scisignal.aap7336.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paulson RF, Ruan B, Hao S, Chen Y. Stress erythropoiesis is a key inflammatory response. Cells. 2020;9(3):634. https://doi.org/10.3390/cells9030634.
Article
PubMed Central
CAS
Google Scholar
Morceau F, Dicato M, Diederich M. Pro-inflammatory cytokine-mediated Anemia: regarding molecular mechanisms of erythropoiesis. Mediat Inflamm. 2009;2009. https://doi.org/10.1155/2009/405016.
McKenzie CV, Colonne CK, Yeo JH, Fraser ST. Splenomegaly: pathophysiological bases and therapeutic options. Int J Biochem Cell Biol. 2018;94:40–3. https://doi.org/10.1016/j.biocel.2017.11.011.
Article
PubMed
CAS
Google Scholar
Porpiglia E, Hidalgo D, Koulnis M, Tzafriri AR, Socolovsky M. Stat5 signaling specifies basal versus stress Erythropoietic responses through distinct binary and graded dynamic modalities. PLoS Biol. 2012;10(8). https://doi.org/10.1371/journal.pbio.1001383.
Lee P, Chandel NS, Celeste SM. Cellular adaptation to hypoxia through HIFs and beyond. Nat Rev Mol Cell Biol. 2020;21:268–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nekanti U, Dastidar S, Venugopal P, Totey S, Ta M. Increased proliferation and analysis of differential gene expression in human Wharton’s jelly-derived Mesenchymal stromal cells under hypoxia. Int J Biol Sci. 2010;6(5):499–512. https://doi.org/10.7150/ijbs.6.499.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bagby G. Recent advances in understanding hematopoiesis in Fanconi Anemia. F1000Res. 2018;7. https://doi.org/10.12688/f1000research.13213.1.
Nairz M, Schroll A, Moschen AR, Sonnweber T, Theurl M, Theurl I, et al. Erythropoietin contrastingly affects bacterial infection and experimental colitis by inhibiting nuclear factor-κB-inducible immune pathways. Immunity. 2011;34(1):61–74. https://doi.org/10.1016/j.immuni.2011.01.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bunn HF. Erythropoietin. Cold Spring Harbor Perspect Med. 2013;3:a011619.
Article
CAS
Google Scholar
Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen IC. Modulating inflammation through the negative regulation of NF-κB signaling. J Leukoc Biol. 2018;103(6):1131–50. https://doi.org/10.1002/JLB.3MIR0817-346RRR.
Article
CAS
Google Scholar
Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Sig Transduct Target Ther. 2017;2:1–9.
CAS
Google Scholar
Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A. 1996;93(22):12355–8. https://doi.org/10.1073/pnas.93.22.12355.
Article
PubMed
PubMed Central
CAS
Google Scholar
Whyatt D, Lindeboom F, Karis A, Ferreira R, Milot E, Hendriks R, et al. An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature. 2000;406(6795):519–24. https://doi.org/10.1038/35020086.
Article
PubMed
CAS
Google Scholar
Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995;375(6529):316–8. https://doi.org/10.1038/375316a0.
Article
PubMed
CAS
Google Scholar
Perkins AC, Sharpe AH, Orkin SH. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995;375(6529):318–22. https://doi.org/10.1038/375318a0.
Article
PubMed
CAS
Google Scholar
Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature. 1995;373(6513):432–4. https://doi.org/10.1038/373432a0.
Article
PubMed
CAS
Google Scholar
Zon LI, Youssoufian H, Mather C, Lodish HF, Orkin SH. Activation of the erythropoietin receptor promoter by transcription factor GATA-1. Proc Natl Acad Sci U S A. 1991;88(23):10638–41. https://doi.org/10.1073/pnas.88.23.10638.
Article
PubMed
PubMed Central
CAS
Google Scholar
Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC, et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood. 2004;104(10):3136–47. https://doi.org/10.1182/blood-2004-04-1603.
Article
PubMed
CAS
Google Scholar
Anderson KP, Crable SC, Lingrel JB. The GATA-E box-GATA motif in the EKLF promoter is required for in vivo expression. Blood. 2000;95(5):1652–5. https://doi.org/10.1182/blood.V95.5.1652.005k23_1652_1655.
Article
PubMed
CAS
Google Scholar
Han GC, Vinayachandran V, Bataille AR, Park B, Chan-Salis KY, Keller CA, et al. Genome-wide organization of GATA1 and TAL1 determined at high resolution. Mol Cell Biol. 2015;36:157–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalby A, Ballester-Beltrán J, Lincetto C, Mueller A, Foad N, Evans A, et al. Transcription factor levels after forward programming of human pluripotent stem cells with GATA1, FLI1, and TAL1 determine megakaryocyte versus Erythroid cell fate decision. Stem Cell Reports. 2018;11(6):1462–78. https://doi.org/10.1016/j.stemcr.2018.11.001.
Article
PubMed
PubMed Central
CAS
Google Scholar
Psaila B, Barkas N, Iskander D, Roy A, Anderson S, Ashley N, et al. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol. 2016;17(1):83. https://doi.org/10.1186/s13059-016-0939-7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Siatecka M, Bieker JJ. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood. 2011;118(8):2044–54. https://doi.org/10.1182/blood-2011-03-331371.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang P, Zhao Y, Zhong J, Zhang X, Liu Q, Qiu X, et al. Putative regulators for the continuum of erythroid differentiation revealed by single-cell transcriptome of human BM and UCB cells. PNAS. 2020;117(23):12868–76. https://doi.org/10.1073/pnas.1915085117.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gautier E-F, Leduc M, Ladli M, Schulz VP, Lefèvre C, Boussaid I, et al. Comprehensive proteomic analysis of murine terminal erythroid differentiation. Blood Advances. 2020;4(7):1464–77. https://doi.org/10.1182/bloodadvances.2020001652.
Article
PubMed
PubMed Central
CAS
Google Scholar
Palii CG, Perez-Iratxeta C, Yao Z, Cao Y, Dai F, Davison J, et al. Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages. EMBO J. 2011;30(3):494–509. https://doi.org/10.1038/emboj.2010.342.
Article
PubMed
CAS
Google Scholar
Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, et al. Hypoxia modifies the Transcriptome of human NK cells, modulates their Immunoregulatory profile, and influences NK cell subset migration. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.02358.
Velásquez SY, Killian D, Schulte J, Sticht C, Thiel M, Lindner HA. Short term hypoxia synergizes with interleukin 15 priming in driving glycolytic gene transcription and supports human natural killer cell activities*. J Biol Chem. 2016;291:12960–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fathali N, Ostrowski RP, Hasegawa Y, Lekic T, Tang J, Zhang JH. Splenic Immune Cells in Experimental Neonatal Hypoxia–Ischemia. Transl Stroke Res. 2013;4(2):208–19. https://doi.org/10.1007/s12975-012-0239-9.
Article
PubMed
CAS
Google Scholar
Murakami Y, Yamaguchi M, Sato T, Kobayashi R, Negishi S, Kasai K. Exposure to mild hypoxia associated with Oral breathing affects the NK cell ratio in the spleen. Int J Oral-Med Sci. 2016;14(4):67–73. https://doi.org/10.5466/ijoms.14.67.
Article
Google Scholar
Mu Y, Li W, Wu B, Chen J, Chen X. Transcriptome analysis reveals new insights into immune response to hypoxia challenge of large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol. 2020;98:738–47. https://doi.org/10.1016/j.fsi.2019.11.021.
Article
PubMed
CAS
Google Scholar
Ni M, Wen H, Li J, Chi M, Bu Y, Ren Y, et al. The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress. Fish Shellfish Immunol. 2014;36(2):325–35. https://doi.org/10.1016/j.fsi.2013.12.002.
Article
PubMed
CAS
Google Scholar
Kupittayanant P, Kinchareon W. Hematological and biochemical responses of the flowerhorn fish to hypoxia. J Anim Vet Adv. 2011;10:2631–8.
CAS
Google Scholar
Goswami AR, Ghosh T. Vitamin E reduces hypobaric hypoxia-induced immune responses in male rats. High Alt Med Biol. 2018;20:12–21.
Article
CAS
PubMed
Google Scholar
Tolonen J-P, Heikkilä M, Malinen M, Lee H-M, Palvimo JJ, Wei G-H, et al. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci. 2020;77(18):3627–42. https://doi.org/10.1007/s00018-019-03387-9.
Article
PubMed
CAS
Google Scholar
Kristan A, Debeljak N, Kunej T. Genetic variability of hypoxia-inducible factor alpha (HIFA) genes in familial erythrocytosis: analysis of the literature and genome databases. Eur J Haematol. 2019;103(4):287–99. https://doi.org/10.1111/ejh.13304.
Article
PubMed
CAS
Google Scholar
Yamashita T, Ohneda O, Nagano M, Iemitsu M, Makino Y, Tanaka H, et al. Abnormal heart development and lung remodeling in mice lacking the hypoxia-inducible factor-related basic helix-loop-helix PAS protein NEPAS. Mol Cell Biol. 2008;28:1285–97.
Article
CAS
PubMed
Google Scholar
Bogacheva O, Bogachev O, Menon M, Dev A, Houde E, Valoret EI, et al. DYRK3 dual-specificity kinase attenuates erythropoiesis during Anemia. J Biol Chem. 2008;283(52):36665–75. https://doi.org/10.1074/jbc.M807844200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geiger JN, Knudsen GT, Panek L, Pandit AK, Yoder MD, Lord KA, et al. mDYRK3 kinase is expressed selectively in late erythroid progenitor cells and attenuates colony-forming unit-erythroid development. Blood. 2001;97(4):901–10. https://doi.org/10.1182/blood.V97.4.901.
Article
PubMed
CAS
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. https://doi.org/10.1093/bioinformatics/btp120.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
PubMed
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007;2(1):5–7. https://doi.org/10.6026/97320630002005.
Article
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559. https://doi.org/10.1186/1471-2105-9-559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47(W1):W212–24. https://doi.org/10.1093/nar/gkz446.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Z, Quan L, Huang A, Zhao Q, Yuan Y, Yuan X, et al. seq-ImmuCC: Cell-Centric View of Tissue Transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-Seq Data. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.01286.
Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. https://doi.org/10.1038/nmeth.3337.
Article
PubMed
PubMed Central
CAS
Google Scholar
An X, Schulz VP, Li J, Wu K, Liu J, Xue F, et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood. 2014;123(22):3466–77. https://doi.org/10.1182/blood-2014-01-548305.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27(7):1017–8. https://doi.org/10.1093/bioinformatics/btr064.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wickham H. ggplot2. WIREs Comput Stat. 2011;3(2):180–5. https://doi.org/10.1002/wics.147.
Article
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant. 2020;13:1194–202.