Sanchez-Contreras M, Vlisidou I. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol Genet Eng Rev. 2008;25(1):203–44. https://doi.org/10.5661/bger-25-203.
Article
Google Scholar
Ratzka C, Gross R, Feldhaar H. Endosymbiont tolerance and control within insect hosts. Insects. 2012;3(2):553–72. https://doi.org/10.3390/insects3020553.
Article
PubMed
PubMed Central
Google Scholar
Brinza L, Viñuelas J, Cottret L, Calevro F, Rahbé Y, Febvay G, et al. Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum. Comptes Rendus Biol. 2009;332(11):1034–49. https://doi.org/10.1016/j.crvi.2009.09.007.
Moran N, Baumann P. Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol Evol. 1994;9(1):15–20. https://doi.org/10.1016/0169-5347(94)90226-7.
Article
CAS
PubMed
Google Scholar
Hansen AK, Moran NA. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci U S A. 2011;108(7):2849–54. https://doi.org/10.1073/pnas.1013465108.
Article
PubMed
PubMed Central
Google Scholar
Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43(1):17–37. https://doi.org/10.1146/annurev.ento.43.1.17.
Wilkinson TL, Fukatsu T, Ishikawa H. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Struct Dev. 2003;32(2–3):241–5. https://doi.org/10.1016/S1467-8039(03)00036-7.
Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol. 2010;55(1):247–66. https://doi.org/10.1146/annurev-ento-112408-085305.
Article
CAS
PubMed
Google Scholar
Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol. 2005;71(6):3302–10. https://doi.org/10.1128/AEM.71.6.3302-3310.2005.
Gehrer L, Vorburger C. Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett. 2012;8(4):613–5. https://doi.org/10.1098/rsbl.2012.0144.
Article
PubMed
PubMed Central
Google Scholar
Pons I, Renoz F, Noël C, Hance T. Circulation of the cultivable symbiont Serratia symbiotica in aphids is mediated by plants. Front Microbiol. 2019;10(764):1–13.
Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25(1):697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615.
Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, de Vos M, et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 2010;11(2):R21. https://doi.org/10.1186/gb-2010-11-2-r21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laughton AM, Garcia JR, Altincicek B, Strand MR, Gerardo NM. Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. J Insect Physiol. 2011;57(6):830–9. https://doi.org/10.1016/j.jinsphys.2011.03.015.
Article
CAS
PubMed
Google Scholar
Guo J, Hatt S, He K, Chen J, Francis F, Wang Z. Nine facultative endosymbionts in aphids. A review. J Asia Pacific Entomol. 2017;20(3):794–801. https://doi.org/10.1016/j.aspen.2017.03.025.
Article
Google Scholar
Barribeau SM, Parker BJ, Gerardo NM. Exposure to natural pathogens reveals costly aphid response to fungi but not bacteria. Ecol Evol. 2014;4(4):488–93. https://doi.org/10.1002/ece3.892.
Article
PubMed
PubMed Central
Google Scholar
Altincicek B, ter Braak B, Laughton AM, Udekwu KI, Gerardo NM. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids. Dev Comp Immunol. 2011;35(10):1091–7. https://doi.org/10.1016/j.dci.2011.03.017.
Renoz F, Noel C, Errachid A, Foray V, Hance T. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process. PLoS One. 2015;10(3):e0122099. https://doi.org/10.1371/journal.pone.0122099.
Schmitz A, Anselme C, Ravallec M, Rebuf C, Simon J-C, Gatti J-L, et al. The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge. PLoS One. 2012;7(7):e42114. https://doi.org/10.1371/journal.pone.0042114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scarborough CL, Ferrari J, Godfray HCJ. Aphid protected from pathogen by endosymbiont. Science. 2005;310(5755):1781. https://doi.org/10.1126/science.1120180.
Article
CAS
PubMed
Google Scholar
Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A. 2005;102(36):12795–800. https://doi.org/10.1073/pnas.0506131102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner SM, Martinez AJ, Ruan Y-M, Kim KL, Lenhart PA, Dehnel AC, et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol. 2015;29(11):1402–10. https://doi.org/10.1111/1365-2435.12459.
Article
Google Scholar
Russell JA, Moran NA. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B. 2006;273(1586):603–10. https://doi.org/10.1098/rspb.2005.3348.
Article
PubMed
Google Scholar
Smith AH, Łukasik P, O'Connor MP, Lee A, Mayo G, Drott MT, et al. Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol. 2015;24(5):1135–49. https://doi.org/10.1111/mec.13095.
Article
PubMed
Google Scholar
Vorburger C, Rouchet R. Are aphid parasitoids locally adapted to the prevalence of defensive symbionts in their hosts? BMC Evol Biol. 2016;16(1):271. https://doi.org/10.1186/s12862-016-0811-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dykstra HR, Weldon SR, Martinez AJ, White JA, Hopper KR, Heimpel GE, et al. Factors limiting the spread of the protective symbiont Hamiltonella defensa in Aphis craccivora aphids. Appl Environ Microbiol. 2014;80(18):5818–27. https://doi.org/10.1128/AEM.01775-14.
Oliver KM, Campos J, Moran NA, Hunter MS. Population dynamics of defensive symbionts in aphids. Proc R Soc B. 2008;275(1632):293–9. https://doi.org/10.1098/rspb.2007.1192.
Article
PubMed
Google Scholar
Hafer-Hahmann N, Vorburger C. Parasitoids as drivers of symbiont diversity in an insect host. Ecol Lett. 2020;23(8):1232–41. https://doi.org/10.1111/ele.13526.
Article
PubMed
Google Scholar
Price, D.R.G., H. Feng, J.D. Baker, S. Bavan, C.W. Luetje and A.C.C. Wilson, Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proc Natl Acad Sci U S A, 2014. 111(1): p. 320–325, 1, DOI: https://doi.org/10.1073/pnas.1306068111.
Colella S, Parisot N, Simonet P, Gaget K, Duport G, Baa-Puyoulet P, et al. Bacteriocyte reprogramming to cope with nutritional stress in a phloem sap feeding Hemipteran, the pea aphid Acyrthosiphon pisum. Front Physiol. 2018;9(1498).
Stoy KS, Gibson AK, Gerardo NM, Morran LT. A need to consider the evolutionary genetics of host–symbiont mutualisms. J Evol Biol. 2020;00:1–13.
Google Scholar
Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci. 2003;100(4):1803–7. https://doi.org/10.1073/pnas.0335320100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vorburger C, Sandrock C, Gouskov A, Castañeda LE, Ferrari J. Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host-parasitoid interaction. Evolution. 2009;63(6):1439–50. https://doi.org/10.1111/j.1558-5646.2009.00660.x.
Article
PubMed
Google Scholar
Schmid M, Sieber R, Zimmermann Y-S, Vorburger C. Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Funct Ecol. 2012;26(1):207–15. https://doi.org/10.1111/j.1365-2435.2011.01904.x.
Article
Google Scholar
Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci U S A. 2005;102(47):16919–26. https://doi.org/10.1073/pnas.0507029102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science. 2009;325(5943):992–4. https://doi.org/10.1126/science.1174463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degnan PH, Moran NA. Diverse phage-encoded toxins in a protective insect endosymbiont. Appl Environ Microbiol. 2008;74(21):6782–91. https://doi.org/10.1128/AEM.01285-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver KM, Higashi CH. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr Opin Insect Sci. 2019;32:1–7. https://doi.org/10.1016/j.cois.2018.08.009.
Weldon SR, Strand MR, Oliver KM. Phage loss and the breakdown of a defensive symbiosis in aphids. Proc R Soc B Biol Sci. 2013;280(1751).
Vorburger C, Gouskov A. Only helpful when required: a longevity cost of harbouring defensive symbionts. J Evol Biol. 2011;24(7):1611–7. https://doi.org/10.1111/j.1420-9101.2011.02292.x.
Article
CAS
PubMed
Google Scholar
Vorburger C, Perlman SJ. The role of defensive symbionts in host–parasite coevolution. Biol Rev. 2018;93(4):1747–64. https://doi.org/10.1111/brv.12417.
Article
PubMed
Google Scholar
Cayetano L, Rothacher L, Simon J-C, Vorburger C. Cheaper is not always worse: Strongly protective isolates of a defensive symbiont are less costly to the aphid host. Proc R Soc B. 2015;282(1799).
Dennis AB, Patel V, Oliver KM, Vorburger C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution. 2017;71(11):2599–617. https://doi.org/10.1111/evo.13333.
Article
PubMed
Google Scholar
Kaech H, Vorburger C. Horizontal transmission of the heritable protective endosymbiont Hamiltonella defensa depends on titre and haplotype. Front Microbiol. 2021;11:628755. https://doi.org/10.3389/fmicb.2020.628755.
Wenger JA, Cassone BJ, Legeai F, Johnston JS, Bansal R, Yates AD, et al. Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochem Mol Biol. 2017(102917):1–10.
Goto A, Kumagai T, Kumagai C, Hirose J, Narita H, Mori H, et al. A Drosophila haemocyte-specific protein, hemolectin, similar to human von Willebrand factor. Biochem J. 2001;359(Pt 1):99–108. https://doi.org/10.1042/bj3590099.
Lebestky T, Chang T, Hartenstein V, Banerjee U. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science. 2000;288(5463):146–9. https://doi.org/10.1126/science.288.5463.146.
Franc NC, Dimarcq J-L, Lagueux M, Hoffmann J, Ezekowitz RAB. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity. 1996;4(5):431–43. https://doi.org/10.1016/S1074-7613(00)80410-0.
Zanet J, Stramer B, Millard T, Martin P, Payre F, Plaza S. Fascin is required for blood cell migration during Drosophila embryogenesis. Development. 2009;136(15):2557–65. https://doi.org/10.1242/dev.036517.
Nelson RE, Fessler LI, Takagi Y, Blumberg B, Keene DR, Olson PF, et al. Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J. 1994;13(15):3438–47. https://doi.org/10.1002/j.1460-2075.1994.tb06649.x.
Smith TE, Moran NA. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc Natl Acad Sci. 2020;117(4):2113–21. https://doi.org/10.1073/pnas.1916748117.
Chevignon G, Boyd BM, Brandt JW, Oliver KM, Strand MR. Culture-facilitated comparative genomics of the facultative Symbiont Hamiltonella defensa. Genome Biol Evol. 2018;10(3):786–802. https://doi.org/10.1093/gbe/evy036.
Senti K-A, Brennecke J. The piRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet. 2010;26(12):499–509. https://doi.org/10.1016/j.tig.2010.08.007.
Rubio-Texeira M. Urmylation controls Nil1p and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae. FEBS Lett. 2007;581(3):541–50. https://doi.org/10.1016/j.febslet.2007.01.019.
Khoshnood B, Dacklin I, Grabbe C. Urm1: an essential regulator of JNK signaling and oxidative stress in Drosophila melanogaster. Cell Mol Life Sci. 2016;73(9):1939–54. https://doi.org/10.1007/s00018-015-2121-x.
Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, et al. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog. 2020;16(6):e1008627. https://doi.org/10.1371/journal.ppat.1008627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotani E, Yamakawa M, Iwamoto S, Tashiro M, Mori H, Sumida M, et al. Cloning and expression of the gene hemocytin, an insect humoral lectin which is homologous with the mammalian von Willebrand factor. Biochim Biophys Acta. 1995;1260(3):245–58. https://doi.org/10.1016/0167-4781(94)00202-E.
Article
PubMed
Google Scholar
Goto A, Kadowaki T, Kitagawa Y. Drosophila hemolectin gene is expressed in embryonic and larval hemocytes and its knock down causes bleeding defects. Dev Biol. 2003;264(2):582–91. https://doi.org/10.1016/j.ydbio.2003.06.001.
Scherfer C, Karlsson C, Loseva O, Bidla G, Goto A, Havemann J, et al. Isolation and characterization of hemolymph clotting factors in Drosophila melanogaster by a pullout method. Curr Biol. 2004;14(7):625–9. https://doi.org/10.1016/j.cub.2004.03.030.
Eleftherianos I, Revenis C. Role and importance of phenoloxidase in insect hemostasis. J Innate Immun. 2011;3(1):28–33. https://doi.org/10.1159/000321931.
Article
CAS
PubMed
Google Scholar
Luo C, Belghazi M, Schmitz A, Lemauf S, Desneux N, Simon J-C, et al. Hosting certain facultative symbionts modulates the phenoloxidase activity and immune response of the pea aphid Acyrthosiphon pisum. Insect Sci. 2020; n/a(n/a).
Sanchez Bosch P, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, et al. Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues. Dev Cell. 2019;51(6):787–803 e5.
Nichols HL, Goldstein EB, Ziabari OS, Parker BJ. Intraspecific variation in immune gene expression and heritable symbiont density. bioRxiv. 2020; 2020.12.17.420083.
Kutsukake M, Moriyama M, Shigenobu S, Meng X-Y, Nikoh N, Noda C, et al. Exaggeration and cooption of innate immunity for social defense. Proc Natl Acad Sci. 2019;116(18):8950–9. https://doi.org/10.1073/pnas.1900917116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci U S A. 2009;106(22):9063–8. https://doi.org/10.1073/pnas.0900194106.
Wilcox JL, Dunbar HE, Wolfinger RD, Moran NA. Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol Microbiol. 2003;48(6):1491–500. https://doi.org/10.1046/j.1365-2958.2003.03522.x.
Article
CAS
PubMed
Google Scholar
Moran NA, Dunbar HE, Wilcox JL. Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola. J Bacteriol. 2005;187(12):4229–37. https://doi.org/10.1128/JB.187.12.4229-4237.2005.
Rouïl J, Jousselin E, Coeur d’Acier A, Cruaud C, Manzano-Marín A. The protector within: comparative genomics of APSE phages across aphids reveals rampant recombination and diverse toxin arsenals. Genome Biol Evol. 2020;12(6):878–89.
van der Wilk F, Dullemans AM, Verbeek M, van den Heuvel JFJM. Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Virology. 1999;262(1):104–13. https://doi.org/10.1006/viro.1999.9902.
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–57. https://doi.org/10.1091/mbc.11.12.4241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao H, Bausch C, Richmond C, Blattner FR, Conway T. Functional genomics: expression analysis Escherichia coli growing on minimal and rich media. J Bacteriol. 1999;181(20):6425–40. https://doi.org/10.1128/JB.181.20.6425-6440.1999.
Zhou A, He Z, Redding-Johanson AM, Mukhopadhyay A, Hemme CL, Joachimiak MP, et al. Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ Microbiol. 2010;12(10):2645–57. https://doi.org/10.1111/j.1462-2920.2010.02234.x.
Aseev LV, Koledinskaya LS, Boni IV. Regulation of ribosomal protein operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the transcriptional and translational levels. J Bacteriol. 2016;198(18):2494–502. https://doi.org/10.1128/JB.00187-16.
Zhou X, Liao W-J, Liao J-M, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol. 2015;7(2):92–104. https://doi.org/10.1093/jmcb/mjv014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Andrews, S. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010.
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46.
Article
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2. https://doi.org/10.1093/bioinformatics/bts565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmieder R, Lim YW, Edwards R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics. 2012;28(3):433–5. https://doi.org/10.1093/bioinformatics/btr669.
Article
CAS
PubMed
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:1367–4811.
Article
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421. https://doi.org/10.1186/1471-2105-10-421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. https://doi.org/10.1093/nar/25.17.3389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59.
Article
PubMed
Google Scholar
BioBam Bioinformatics, OmicsBox – Bioinformatics Made Easy. https://www.biobam.com/omicsbox. Accessed 3 Mar 2019.
Conway T, Creecy JP, Maddox SM, Grissom JE, Conkle TL, Shadid TM, et al. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA Sequencing. mBio. 2014;5(4):e01442–14.
Article
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. https://doi.org/10.1093/bioinformatics/bts199.
Article
PubMed
PubMed Central
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Article
CAS
PubMed
Google Scholar
Price A, Gibas C. The quantitative impact of read mapping to non-native reference genomes in comparative RNA-Seq studies. PLoS One. 2017;12(7):e0180904. https://doi.org/10.1371/journal.pone.0180904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7. https://doi.org/10.1038/nbt.3519.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soneson C, Love M, Robinson M. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences [version 2; peer review: 2 approved]. F1000Research. 2016;4(1521).
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
Google Scholar
Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14(6):671–83. https://doi.org/10.1093/bib/bbs046.
Article
CAS
PubMed
Google Scholar
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20(12):1983–92. https://doi.org/10.1109/TVCG.2014.2346248.
Article
PubMed
PubMed Central
Google Scholar
Marini F, Binder H. pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components. BMC Bioinformatics. 2019;20(1):331.
Article
PubMed
PubMed Central
Google Scholar
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35. https://doi.org/10.1093/nar/gkn176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kriventseva EV, Simão FA, Klioutchnikov G, Seppey M, Manni M, Ioannidis P, et al. BUSCO applications from quality assessments to gene prediction and Phylogenomics. Mol Biol Evol. 2017;35(3):543–8.
PubMed Central
Google Scholar
Kriventseva EV, Zdobnov EM, Simão FA, Ioannidis P, Waterhouse RM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Article
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silla-Martínez JM, Capella-Gutiérrez S, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
PubMed
PubMed Central
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016;34(3).
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol. 2014;14(1).
Zhang B, Horvath S. A general framework for weighted co-expression network analysis. Appl. Genet. Mol. Biol. 2005;4(Article 17).
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46(11):1–17.
Article
Google Scholar
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. cluster: cluster analysis basics and extensions. R package version 2.0.7–1; 2018.
Google Scholar
Whitaker D, Christman M. Clustsig: Significant cluster analysis. R package version 1.1; 2014.
Google Scholar
Grote S. GOfuncR: Gene ontology enrichment using FUNC. R package version 1.8.0; 2020.
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Illumina Inc. Effects of index misassignment on multiplexing and downstream analysis. 2018 [cited 2020 February]; 770–2017-004-D:[Available from: https://emea.illumina.com/content/dam/illumina-marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-004.pdf.
Costello M, Fleharty M, Abreu J, Farjoun Y, Ferriera S, Holmes L, et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics. 2018;19(1):332. https://doi.org/10.1186/s12864-018-4703-0.
Article
CAS
PubMed
PubMed Central
Google Scholar