Guy SZ, Thomson PC, Hermesch S. Selection of pigs for improved coping with health and environmental challenges: breeding for resistance or tolerance? Front Genet. 2012;3:281.
Article
PubMed
PubMed Central
Google Scholar
Doeschl-Wilson AB, Kyriazakis I. Should we aim for genetic improvement in host resistance or tolerance to infectious pathogens? Front Genet. 2012;3:272.
PubMed
PubMed Central
Google Scholar
Mulder HA, Rashidi H. Selection on resilience improves disease resistance and tolerance to infections. J Anim Sci. 2017;95(8):3346–58.
CAS
PubMed
Google Scholar
Albers GA, Gray GD, Piper LR, Barker JS, Le Jambre LF, Barger IA. The genetics of resistance and resilience to Haemonchus contortus infection in young merino sheep. Int J Parasitol. 1987;17(7):1355–63.
Article
CAS
PubMed
Google Scholar
Wilkinson JM, Ladinig A, Bao H, Kommadath A, Stothard P, Lunney JK, et al. Differences in whole blood gene expression associated with infection time-course and extent of fetal mortality in a reproductive model of type 2 porcine reproductive and respiratory syndrome virus (PRRSV) infection. PLoS One. 2016;11(4):e0153615.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schroyen M, Eisley C, Koltes JE, Fritz-Waters E, Choi I, Plastow GS, et al. Bioinformatic analyses in early host response to porcine reproductive and respiratory syndrome virus (PRRSV) reveals pathway differences between pigs with alternate genotypes for a major host response QTL. BMC Genomics. 2016;17:196.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kommadath A, Bao H, Choi I, Reecy JM, Koltes JE, Fritz-Waters E, et al. Genetic architecture of gene expression underlying variation in host response to porcine reproductive and respiratory syndrome virus infection. Sci Rep. 2017;7:46203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaing C, Rowland RRR, Allen JE, Certoma A, Thissen JB, Bingham J, et al. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses. Sci Rep. 2017;7(1):10115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lv J, Ding Y, Liu X, Pan L, Zhang Z, Zhou P, et al. Gene expression analysis of porcine whole blood cells infected with foot-and-mouth disease virus using high-throughput sequencing technology. PLoS One. 2018;13(7):e0200081.
Article
PubMed
PubMed Central
CAS
Google Scholar
do Nascimento NC, Guimaraes AMS, Dos Santos AP, Chu Y, Marques LM, Messick JB: RNA-Seq based transcriptome of whole blood from immunocompetent pigs (Sus scrofa) experimentally infected with Mycoplasma suis strain Illinois. Vet Res. 2018, 49(1):49.
Lim KS, Dong Q, Moll P, Vitkovska J, Wiktorin G, Bannister S, et al. The effects of a globin blocker on the resolution of 3'mRNA sequencing data in porcine blood. BMC Genomics. 2019;20(1):741.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moll P, Ante M, Seitz A, Reda T: QuantSeq 3′ mRNA sequencing for RNA quantification. Nat Methods. 2014, 11:i-iii.
Shen-Orr SS, Gaujoux R. Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr Opin Immunol. 2013;25(5):571–8.
Article
CAS
PubMed
Google Scholar
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):96.
Article
PubMed Central
CAS
Google Scholar
Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, Burdin N, Visan L, Ceccarelli M, Poidinger M, Zippelius A, Pedro de Magalhães J, Larbi A: RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep. 2019, 26(6):1627–1640.e7.
Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, et al. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A. 2003;100(4):1896–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Putz AM, Harding JCS, Dyck MK, Fortin F, Plastow GS, Dekkers JCM; PigGen Canada Novel Resilience Phenotypes Using Feed Intake Data From a Natural Disease Challenge Model in Wean-to-Finish Pigs Front Genet 2019, 9:660.
Cheng J, Putz AM, Harding JCS, Dyck MK, Fortin F, Plastow GS, Canada P, Dekkers JCM: Genetic analysis of disease resilience in wean-to-finish pigs from a natural disease challenge model. J Anim Sci. 2020, 98(8):skaa244.
Beiki H, Liu H, Huang J, Manchanda N, Nonneman D, Smith TPL, et al. Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data. BMC Genomics. 2019;20(1):344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nettleton D, Hwang JTG, Caldo RA, Wise RP. Estimating the number of true null hypotheses from a histogram of P values. J Agr Biol Envir St. 2006;11(3):337–56.
Article
Google Scholar
Van Gorp H, Van Breedam W, Delputte PL, Nauwynck HJ. Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus. J Gen Virol. 2008;89(Pt 12):2943–53.
Article
PubMed
CAS
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Q, Lunney JK, Lim KS, Nguyen Y, Hess AS, Beiki H, et al. Gene expression in tonsils in swine following infection with porcine reproductive and respiratory syndrome virus. BMC Vet Res. 2021;17(1):88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai X, Putz AM, Wang Z, Fortin F, Harding JCS, Dyck MK, et al. Exploring phenotypes for disease resilience in pigs using complete blood count data from a natural disease challenge model. Front Genet. 2020;11:216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426(6):1246–64.
Article
CAS
PubMed
Google Scholar
Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16(1):3–9.
Article
CAS
PubMed
Google Scholar
Waddell LA, Lefevre L, Bush SJ, Raper A, Young R, Lisowski ZM, et al. ADGRE1 (EMR1, F4/80) is a rapidly-evolving gene expressed in mammalian monocyte-macrophages. Front Immunol. 2018;9:2246.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ondrackova P, Leva L, Kucerova Z, Vicenova M, Mensikova M, Faldyna M. Distribution of porcine monocytes in different lymphoid tissues and the lungs during experimental Actinobacillus pleuropneumoniae infection and the role of chemokines. Vet Res. 2013;44(1):98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Álvarez-Estrada Á, Rodríguez-Ferri EF, Martínez-Martínez S, Álvarez B, Fernández-Caballero T, Domínguez J, et al. TLR2, Siglec-3 and CD163 expressions on porcine peripheral blood monocytes are increased during sepsis caused by Haemophilus parasuis. Comp Immunol Microbiol Infect Dis. 2019;64:31–9.
Article
PubMed
Google Scholar
Fine DA, Rozenblatt-Rosen O, Padi M, Korkhin A, James RL, Adelmant G, et al. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor. PLoS Pathog. 2012;8(10):e1002949.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Fan X, Liu N, Song Q, Kou J, Shi Y, et al. L-glutamine represses the unfolded protein response in the small intestine of weanling piglets. J Nutr. 2019;149(11):1904–10.
Article
PubMed
Google Scholar
Gimsa U, Tuchscherer M, Kanitz E. Psychosocial stress and immunity-what can we learn from pig studies? Front Behav Neurosci. 2018;12:64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201.
Article
CAS
PubMed
Google Scholar
Fairbairn L, Kapetanovic R, Sester DP, Hume DA. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol. 2011;89(6):855–71.
Article
CAS
PubMed
Google Scholar
O'Connell GC, Tennant CS, Lucke-Wold N, Kabbani Y, Tarabishy AR, Chantler PD, et al. Monocyte-lymphocyte cross-communication via soluble CD163 directly links innate immune system activation and adaptive immune system suppression following ischemic stroke. Sci Rep. 2017;7(1):12940.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishino A, Katsumata Y, Kawasumi H, Hirahara S, Kawaguchi Y, Yamanaka H. Usefulness of soluble CD163 as a biomarker for macrophage activation syndrome associated with systemic lupus erythematosus. Lupus. 2019;28(8):986–94.
Article
CAS
PubMed
Google Scholar
Fabriek BO, van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood. 2009;113(4):887–92.
Article
CAS
PubMed
Google Scholar
Sánchez-Torres C, Gómez-Puertas P, Gómez-del-Moral M, Alonso F, Escribano JM, Ezquerra A, et al. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol. 2003;148(12):2307–23.
Article
PubMed
CAS
Google Scholar
Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 2016;34(1):20–2.
Article
CAS
PubMed
Google Scholar
Wells KD, Bardot R, Whitworth KM, Trible BR, Fang Y, Mileham A, et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. J Virol. 2017;91(2):e01521–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Zhang J, Zhang X, Shi J, Pan Y, Zhou R, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antivir Res. 2018;151:63–70.
Article
CAS
PubMed
Google Scholar
Dong Q: Genetics and transcriptomics of host response to PRRS in nursery pigs. 2019. Graduate Theses and Dissertations 17441. https://lib.dr.iastate.edu/etd/17441
Boddicker N, Waide EH, Rowland RR, Lunney JK, Garrick DJ, Reecy JM, et al. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J Anim Sci. 2012;90(6):1733–46.
Article
CAS
PubMed
Google Scholar
Boddicker NJ, Bjorkquist A, Rowland RR, Lunney JK, Reecy JM, Dekkers JC. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genet Sel Evol. 2014;46(1):18.
Article
PubMed
PubMed Central
Google Scholar
Koltes JE, Fritz-Waters E, Eisley CJ, Choi I, Bao H, Kommadath A, et al. Identification of a putative quantitative trait nucleotide in guanylate binding protein 5 for host response to PRRS virus infection. BMC Genomics. 2015;16(1):412.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ni L, Song C, Wu X, Zhao X, Wang X, Li B, et al. RNA-seq transcriptome profiling of porcine lung from two pig breeds in response to Mycoplasma hyopneumoniae infection. PeerJ. 2019;7:e7900.
Article
PubMed
PubMed Central
Google Scholar
Truong AD, Hong YH, Lillehoj HS. RNA-seq profiles of immune related genes in the spleen of necrotic enteritis-afflicted chicken lines. Asian-Australas J Anim Sci. 2015;28(10):1496–511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Del Vesco AP, Kaiser MG, Monson MS, Zhou H, Lamont SJ. Genetic responses of inbred chicken lines illustrate importance of eIF2 family and immune-related genes in resistance to Newcastle disease virus. Sci Rep. 2020;10(1):6155.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sutherland MA, Backus BL, McGlone JJ. Effects of transport at weaning on the behavior, physiology and performance of pigs. Animals (Basel). 2014;4(4):657–69.
Article
Google Scholar
Cummins AG, Thompson FM. Postnatal changes in mucosal immune response: a physiological perspective of breast feeding and weaning. Immunol Cell Biol. 1997;75(5):419–29.
Article
CAS
PubMed
Google Scholar
Bottje WG, Lassiter K, Piekarski-Welsher A, Dridi S, Reverter A, Hudson NJ, et al. Proteogenomics reveals enriched ribosome assembly and protein translation in Pectoralis major of high feed efficiency pedigree broiler males. Front Physiol. 2017;16(8):306.
Article
Google Scholar
Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. J Inorg Biochem. 2013;129:162–71.
Article
CAS
PubMed
Google Scholar
Quintero-Gutiérrez AG, González-Rosendo G, Sánchez-Muñoz J, Polo-Pozo J, Rodríguez-Jerez JJ. Bioavailability of heme iron in biscuit filling using piglets as an animal model for humans. Int J Biol Sci. 2008;4(1):58–62.
Article
PubMed
PubMed Central
Google Scholar
Staroń R, Lipiński P, Lenartowicz M, Bednarz A, Gajowiak A, Smuda E, et al. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: duodenal expression profile of genes involved in heme iron absorption. PLoS One. 2017;12(7):e0181117.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ryu WS: Virus life cycle. Molecular Virology of Human Pathogenic Viruses 2017, 31–45.
Gale M Jr, Tan SL, Katze MG. Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev. 2000;64(2):239–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park S, Yang JS, Shin YE, Park J, Jang SK, Kim S. Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol. 2011;7:494.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harris N, Kunicka J, Kratz A. The ADVIA 2120 hematology system: flow cytometry-based analysis of blood and body fluids in the routine hematology laboratory. Lab Hematol. 2005;11(1):47–61.
Article
PubMed
Google Scholar
Andrews SFASTQC. A quality control tool for high throughput sequence data; 2010.
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ. Smyth GK: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2016;67(1):1–48.
Google Scholar
Kolde R: Pheatmap: pretty heatmaps (R package version 1.0.12). 2019.