Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland J, Mudge J, Sisu C, Wright J, Armstrong J, Barnes I, Berry A, Bignell A, Boix C, Carbonell Sala S, Cunningham F, Di Domenico T, Donaldson S, Fiddes I, García Girón C, Gonzalez J, Grego T, Hardy M, Hourlier T, Howe K, Hunt T, Izuogu O, Johnson R, Martin F, Martínez L, Mohanan S, Muir P, Navarro F, Parker A, Pei B, Pozo F, Riera F, Ruffier M, Schmitt B, Stapleton E, Suner M-M, Sycheva I, Uszczynska-Ratajczak B, Wolf M, Xu J, Yang Y, Yates A, Zerbino D, Zhang Y, Choudhary J, Gerstein M, Guigó R, Hubbard T, Kellis M, Paten B, Tress M, Flicek P. GENCODE 2021. Nucleic Acids Res. 2020:1087. https://doi.org/10.1093/nar/gkaa1087.
O’Leary N, Wright M, Brister J, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell C, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar V, Kodali V, Li W, Maglott D, Masterson P, McGarvey K, Murphy M, O’Neill K, Pujar S, Rangwala S, Rausch D, Riddick L, Schoch C, Shkeda A, Storz S, Sun H, Thibaud-Nissen F, Tolstoy I, Tully R, Vatsan A, Wallin C, Webb D, Wu W, Landrum M, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy T, Pruitt K. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016; 44(D1):733–45. https://doi.org/10.1093/nar/gkv1189.
Article
CAS
Google Scholar
Chen G, Wang C, Shi L, Qu X, Chen J, Yang J, Shi C, Chen L, Zhou P, Ning B, Tong W, Shi T. Incorporating the human gene annotations in different databases significantly improved transcriptomic and genetic analyses,. RNA (New York, N.Y.) 2013; 19(4):479–89. https://doi.org/10.1261/rna.037473.112.
Article
CAS
Google Scholar
Tilgner H, Jahanbani F, Blauwkamp T, Moshrefi A, Jaeger E, Chen F, Harel I, Bustamante C, Rasmussen M, Snyder M. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat Biotechnol. 2015; 33(7):736–42. https://doi.org/10.1038/nbt.3242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mercer T, Clark M, Crawford J, Brunck M, Gerhardt D, Taft R, Nielsen L, Dinger M, Mattick J. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat Protoc. 2014; 9(5):989–1009. https://doi.org/10.1038/nprot.2014.058.
Article
CAS
PubMed
Google Scholar
Foote A, Wang Z, Kendziorski C, Thibeault S. Tissue specific human fibroblast differential expression based on RNAsequencing analysis. BMC Genomics. 2019; 20(1):308. https://doi.org/10.1186/s12864-019-5682-5.
Article
PubMed
PubMed Central
Google Scholar
Yamada A, Yu P, Lin W, Okugawa Y, Boland C, Goel A. A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci Rep. 2018; 8(1):1–10. https://doi.org/10.1038/s41598-017-18407-6.
Google Scholar
Chowdhury H, Bhattacharyya D, Kalita J. Differential Expression Analysis of RNA-seq Reads: Overview, Taxonomy and Tools. IEEE/ACM Trans Comput Biol Bioinforma. 2018; PP(99):1. https://doi.org/10.1109/tcbb.2018.2873010.
Article
Google Scholar
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak M, Gaffney D, Elo L, Zhang X, Mortazavi A. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016; 17(1):1–19. https://doi.org/10.1186/s13059-016-0881-8.
Article
CAS
Google Scholar
Li B, Ruotti V, Stewart R, Thomson J, Dewey C. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010; 26(4):493–500. https://doi.org/10.1093/bioinformatics/btp692.
Article
PubMed
CAS
Google Scholar
Zhang C, Zhang B, Lin L-L, Zhao S. Evaluation and comparison of computational tools for RNA-seq isoform quantification. BMC Genomics. 2017; 18(1):1–11. https://doi.org/10.1186/s12864-017-4002-1.
Article
Google Scholar
Assefa A, Paepe K, Everaert C, Mestdagh P, Thas O, Vandesompele J. Differential gene expression analysis tools exhibit substandard performance for long non-coding RNA-sequencing data. Genome Biol. 2018; 19(1):1–16. https://doi.org/10.1186/s13059-018-1466-5.
Article
CAS
Google Scholar
Sahraeian S, Mohiyuddin M, Sebra R, Tilgner H, Afshar P, Au K, Asadi N, Gerstein M, Wong W, Snyder M, Schadt E, Lam H. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat Commun. 2017; 8(1):1–14. https://doi.org/10.1038/s41467-017-00050-4.
Article
CAS
Google Scholar
Schurch N, Schofield P, Gierlińki M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simpson G, Owen-Hughes T, Blaxter M, Barton G. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?RNA. 2016; 22(6):839–51. https://doi.org/10.1261/rna.053959.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seyednasrollah F, Laiho A, Elo L. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform. 2015; 16(1):59–70. https://doi.org/10.1093/bib/bbt086.
Article
CAS
PubMed
Google Scholar
Zhang Z, Jhaveri D, Marshall V, Bauer D, Edson J, Narayanan R, Robinson G, Lundberg A, Bartlett P, Wray N, Zhao Q-Y. A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data. PLoS ONE. 2014; 9(8):103207. https://doi.org/10.1371/journal.pone.0103207.
Article
CAS
Google Scholar
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason C, Socci N, Betel D. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 2013; 14(9):3158. https://doi.org/10.1186/gb-2013-14-9-r95.
Article
CAS
Google Scholar
Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinforma. 2013; 14(1):91. https://doi.org/10.1186/1471-2105-14-91.
Article
Google Scholar
Robles J, Qureshi S, Stephen S, Wilson S, Burden C, Taylor J. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics. 2012; 13(1):484. https://doi.org/10.1186/1471-2164-13-484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Witten D, Johnstone I, Tibshirani R. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics. 2012; 13(3):523–38. https://doi.org/10.1093/biostatistics/kxr031.
Article
PubMed
Google Scholar
Williams C, Baccarella A, Parrish J, Kim C. Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq. BMC Bioinforma. 2017; 18(1):38. https://doi.org/10.1186/s12859-016-1457-z.
Article
CAS
Google Scholar
Zhao S, Zhang B. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. BMC Genomics. 2015; 16(1):1–14. https://doi.org/10.1186/s12864-015-1308-8.
Article
CAS
Google Scholar
Wu P-Y, Phan J, Wang M. The Effect of Human Genome Annotation Complexity on RNA-Seq Gene Expression Quantification. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops. New York: IEEE: 2012. p. 712–7. https://doi.org/10.1109/bibmw.2012.6470224.
Google Scholar
Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011; 12(1):323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
Google Scholar
Consortium S-I. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol. 2014; 32(9):903–14. https://doi.org/10.1038/nbt.2957.
Article
CAS
Google Scholar
Schuierer S, Carbone W, Knehr J, Petitjean V, Fernandez A, Sultan M, Roma G. A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics. 2017; 18(1):1–13. https://doi.org/10.1186/s12864-017-3827-y.
Article
CAS
Google Scholar
Dobin A, Davis C, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Robinson M, McCarthy D, Smyth G. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009; 26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
PubMed
PubMed Central
CAS
Google Scholar
Frazee A, Jaffe A, Langmead B, Leek J. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics. 2015; 31(17):2778–84. https://doi.org/10.1093/bioinformatics/btv272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soneson C, Robinson M. Towards unified quality verification of synthetic count data with countsimQC. Bioinformatics. 2017; 34(4):691–2. https://doi.org/10.1093/bioinformatics/btx631.
Article
PubMed Central
CAS
Google Scholar
Soneson C, Love M, Robinson M. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016; 4:1521. https://doi.org/10.12688/f1000research.7563.2.
Article
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg S. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25(9):1105–11. https://doi.org/10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4):36. https://doi.org/10.1186/gb-2013-14-4-r36.
Article
CAS
Google Scholar
Kim D, Langmead B, Salzberg S. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015; 12(4):357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Paggi J, Park C, Bennett C, Salzberg S. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37(8):907–15. https://doi.org/10.1038/s41587-019-0201-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, Baren MJv, Salzberg S, Wold B, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28(5):511. https://doi.org/10.1038/nbt.1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Hendrickson D, Sauvageau M, Goff L, Rinn J, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013; 31(1):46. https://doi.org/10.1038/nbt.2450.
Article
CAS
PubMed
Google Scholar
Pertea M, Pertea G, Antonescu C, Chang T-C, Mendell J, Salzberg S. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015; 33(3):290–5. https://doi.org/10.1038/nbt.3122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5):525–7. https://doi.org/10.1038/nbt.3519.
Article
CAS
PubMed
Google Scholar
Patro R, Duggal G, Love M, Irizarry R, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Publ Group. 2017; 14(4):417–9. https://doi.org/10.1038/nmeth.4197.
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):106. https://doi.org/10.1186/gb-2010-11-10-r106.
Article
CAS
Google Scholar
Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):31–21. https://doi.org/10.1186/s13059-014-0550-8.
Google Scholar
Leng N, Dawson J, Thomson J, Ruotti V, Rissman A, Smits B, Haag J, Gould M, Stewart R, Kendziorski C. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013; 29(8):1035–43. https://doi.org/10.1093/bioinformatics/btt087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frazee A, Pertea G, Jaffe A, Langmead B, Salzberg S, Leek J. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol. 2015; 33(3):243–6. https://doi.org/10.1038/nbt.3172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pimentel H, Bray N, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017; 14(7):687–90. https://doi.org/10.1038/nmeth.4324.
Article
CAS
PubMed
Google Scholar
Kanitz A, Gypas F, Gruber A, Gruber A, Martin G, Zavolan M. Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol. 2015; 16(1):1–26. https://doi.org/10.1186/s13059-015-0702-5.
Article
CAS
Google Scholar
Dempster A, Laird N, Rubin D. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J R Stat Soc Ser B Methodol. 1977; 39(1):1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x.
Google Scholar
Zheng H, Brennan K, Hernaez M, Gevaert O. Benchmark of long non-coding RNA quantification for RNA sequencing of cancer samples. GigaScience. 2019; 8(12). https://doi.org/10.1093/gigascience/giz145.
Varabyou A, Salzberg S, Pertea M. Effects of transcriptional noise on estimates of gene and transcript expression in RNA sequencing experiments. Genome Res. 2020:266213–120. https://doi.org/10.1101/gr.266213.120.
Collado-Torres L, Nellore A, Frazee A, Wilks C, Love M, Langmead B, Irizarry R, Leek J, Jaffe A. Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res. 2017; 45(2):9. https://doi.org/10.1093/nar/gkw852.
Article
CAS
Google Scholar
Audoux J, Philippe N, Chikhi R, Salson M, Gallopin M, Gabriel M, Coz J, Drouineau E, Commes T, Gautheret D. DE-kupl: exhaustive capture of biological variation in RNA-seq data through k-mer decomposition. Genome Biol. 2017; 18(1):243. https://doi.org/10.1186/s13059-017-1372-2.
Article
PubMed
PubMed Central
CAS
Google Scholar