Dammann R, Lucchini R, Koller T, Sogo JM. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res. 1993;21:2331–8.
Article
CAS
Google Scholar
Ellis RE, Sulston JE, Coulson AR. The rDNA of C. elegans: sequence and structure. Nucleic Acids Res. 1986;14:2345–64.
Article
CAS
Google Scholar
Files JG, Hirsh D. Ribosomal DNA of Caenorhabditis elegans. J Mol Biol. 1981;149:223–40. https://doi.org/10.1016/0022-2836(81)90299-0.
Article
CAS
PubMed
Google Scholar
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.
Article
CAS
Google Scholar
Wai HH, Vu L, Oakes M, Nomura M. Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis of rDNA promoter elements in vivo. Nucleic Acids Res. 2000;28:3524–34.
Article
CAS
Google Scholar
Poole AM, Kobayashi T, Ganley ARD. A positive role for yeast extrachromosomal rDNA circles? Bioessays. 2012;34:725. https://doi.org/10.1002/BIES.201200037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith JS, Boeke JD. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 1997;11:241–54. https://doi.org/10.1101/GAD.11.2.241.
Article
CAS
PubMed
Google Scholar
Kuroki-Kami A, Nichuguti N, Yatabe H, Mizuno S, Kawamura S, Fujiwara H. Targeted gene knockin in zebrafish using the 28S rDNA-specific non-LTR-retrotransposon R2Ol. Mob DNA. 2019;10:1–12. https://doi.org/10.1186/S13100-019-0167-2/FIGURES/5.
Article
CAS
Google Scholar
Xu B, Li H, Perry JM, Singh VP, Unruh J, Yu Z, et al. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet. 2017;13. https://doi.org/10.1371/JOURNAL.PGEN.1006771.
Johnson R, Strehler BL. Loss of genes coding for ribosomal RNA in ageing brain cells. Nature. 1972;240:412–4. https://doi.org/10.1038/240412A0.
Article
CAS
PubMed
Google Scholar
Stults DM, Killen MW, Pierce HH, Pierce AJ. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2008;18:13–8. https://doi.org/10.1101/gr.6858507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson O, Edgley M, Strasbourger P, Flibotte S, Ewing B, Adair R, et al. The million mutation project: a new approach to genetics in Caenorhabditis elegans. Genome Res. 2013;23:1749–62. https://doi.org/10.1101/gr.157651.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farslow JC, Lipinski KJ, Packard LB, Edgley ML, Taylor J, Flibotte S, et al. Rapid increase in frequency of gene copy-number variants during experimental evolution in Caenorhabditis elegans. BMC Genomics. 2015;16. https://doi.org/10.1186/s12864-015-2253-2.
Vierna J, Wehner S, Höner Zu Siederdissen C, Martínez-Lage A, Marz M. Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity (Edinb). 2013;111:410–21.
Article
CAS
Google Scholar
Bik HM, Fournier D, Sung W, Bergeron RD, Thomas WK. Intra-genomic variation in the ribosomal repeats of nematodes. PLoS One. 2013;8:e78230.
Article
CAS
Google Scholar
Kuo BA, Gonzalez IL, Gillespie DA, Sylvester JE. Human ribosomal RNA variants from a single individual and their expression in different tissues. Nucleic Acids Res. 1996;24:4817–24.
Article
CAS
Google Scholar
Tseng H, Chou W, Wang J, Zhang X, Zhang S, Schultz RM. Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS One. 2008;3:e1843.
Article
Google Scholar
James SA, O’Kelly MJT, Carter DM, Davey RP, Van Oudenaarden A, Roberts IN. Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole-genome resequencing. Genome Res. 2009;19:626–35.
Article
CAS
Google Scholar
Coen E, Strachan T, Dover G. Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol. 1982;158:17–35.
Article
CAS
Google Scholar
Garcia S, Kovařík A, Leitch AR, Garnatje T. Cytogenetic features of rRNA genes across land plants: analysis of the plant rDNA database. Plant J. 2017;89:1020–30.
Article
CAS
Google Scholar
Nelson DW, Honda BM. Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegans. Gene. 1985;38:245–51.
Article
CAS
Google Scholar
Nelson DW, Honda BM. Two highly conserved transcribed regions in the 5S DNA repeats of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Res. 1989;17:8657–67.
Article
CAS
Google Scholar
Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, et al. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 2003;1:E45.
Article
Google Scholar
Murphy SJ, Cheville JC, Zarei S, Johnson SH, Sikkink RA, Kosari F, et al. Mate pair sequencing of whole-genome-amplified DNA following laser capture microdissection of prostate. DNA Res. 2012;19:395–406.
Article
CAS
Google Scholar
Consortium* TC elegans S. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science (80- ). 1998;282:2012–8. https://doi.org/10.1126/SCIENCE.282.5396.2012/SUPPL_FILE/C-ELEGANS.XHTML.
Belton J-M, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi–C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58:268–76. https://doi.org/10.1016/j.ymeth.2012.05.001.
Article
CAS
PubMed
Google Scholar
Li R, Hsieh C-L, Young A, Zhang Z, Ren X, Zhao Z. Illumina Synthetic Long Read Sequencing Allows Recovery of Missing Sequences even in the “Finished” C. elegans Genome. Sci Rep. 2015;5:10814. https://doi.org/10.1038/srep10814.
Ross JA, Koboldt DC, Staisch JE, Chamberlin HM, Gupta BP, Miller RD, et al. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination. PLoS Genet. 2011;7:e1002174.
Article
CAS
Google Scholar
Bi Y, Ren X, Li R, Ding Q, Xie D, Zhao Z. Specific interactions between autosome and X chromosomes cause hybrid male sterility in Caenorhabditis species. Genetics. 2019; 212(3):801-13.
Bi Y, Ren X, Yan C, Shao J, Xie D, Zhao Z. A Genome-wide hybrid incompatibility landscape between Caenorhabditis briggsae and C nigoni. PLoS Genet 2015;11:e1004993. https://doi.org/10.1371/journal.pgen.1004993.
Yan C, Bi Y, Yin D, Zhao Z. A method for rapid and simultaneous mapping of genetic loci and introgression sizes in nematode species. PLoS One. 2012;7:e43770. https://doi.org/10.1371/journal.pone.0043770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren X, Li R, Wei X, Bi Y, Ho VWS, Ding Q, et al. Genomic basis of recombination suppression in the hybrid between Caenorhabditis briggsae and C. nigoni. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gkx1277.
Krishnakumar R, Sinha A, Bird SW, Jayamohan H, Edwards HS, Schoeniger JS, et al. Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias. Sci Rep. 2018;8:3159.
Article
Google Scholar
Tyson JR, O’Neil NJ, Jain M, Olsen HE, Hieter P, Snutch TP. MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res. 2018;28:266–74.
Article
CAS
Google Scholar
Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4060.
Yoshimura J, Ichikawa K, Shoura MJ, Artiles KL, Gabdank I, Wahba L, et al. Recompleting the Caenorhabditis elegans genome. Genome Res. 2019;29:1009–22. https://doi.org/10.1101/gr.244830.118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loman NJ, Watson M. Successful test launch for nanopore sequencing. Nat Methods. 2015;12:303–4.
Article
CAS
Google Scholar
Yoshimura J, Ichikawa K, Shoura MJ, Artiles KL, Gabdank I. Wahba L, et al. Recompleting the Caenorhabditis elegans genome. 2019. https://doi.org/10.1101/gr.244830.118.
Kim C, Kim J, Kim S, Cook DE, Evans KS, Andersen EC, et al. Long-read sequencing reveals intra-species tolerance of substantial structural variations and new subtelomere formation in C. elegans. Genome Res. 2019. https://doi.org/10.1101/gr.246082.118.
Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–84.
Article
CAS
Google Scholar
Logsdon GA, Vollger MR, Hsieh PH, Mao Y, Liskovykh MA, Koren S, et al. The structure, function and evolution of a complete human chromosome 8. Nature. 2021;593:101–7. https://doi.org/10.1038/S41586-021-03420-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris TW, Arnaboldi V, Cain S, Chan J, Chen WJ, Cho J, et al. WormBase: a modern model organism information resource. Nucleic Acids Res. 2020;48:D762–7. https://doi.org/10.1093/nar/gkz920.
Article
CAS
PubMed
Google Scholar
Chen G, Stepanenko A, Borisjuk N. Mosaic arrangement of the 5S rDNA in the aquatic plant Landoltia punctata (Lemnaceae). Front Plant Sci. 2021;12:678689. https://doi.org/10.3389/FPLS.2021.678689/FULL.
Article
PubMed
PubMed Central
Google Scholar
Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 2017;10:679–90.
Google Scholar
Frøkjær-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S, LaBella M, et al. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods. 2014;11:529–34. https://doi.org/10.1038/nmeth.2889.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barstead R, Moulder G, Cobb B, Frazee S, Henthorn D, Holmes J, et al. Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 genes, genomes. Genet. 2012;2:1415–25.
CAS
Google Scholar
Koch R, Van Luenen HGAM, Van Der Horst M, Thijssen KL, Plasterk RHA. Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. Genome Res. 2000;10:1690–6.
Article
CAS
Google Scholar
Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 2016;32(14):2103-10. https://doi.org/10.1093/bioinformatics/btw152.
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.
Article
CAS
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
Google Scholar
Johnson SM, Tan FJ, McCullough HL, Riordan DP, Fire AZ. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res. 2006;16:1505–16.
Article
CAS
Google Scholar
Siddiqi IN, Dodd JA, Vu L, Eliason K, Oakes ML, Keener J, et al. Transcription of chromosomal rRNA genes by both RNA polymerase I and II in yeast uaf30 mutants lacking the 30 kDa subunit of transcription factor UAF. EMBO J. 2001;20:4512–21.
Article
CAS
Google Scholar
Luo Y, Fefelova E, Ninova M, Chen YCA, Aravin AA. Repression of interrupted and intact rDNA by the SUMO pathway in Drosophila melanogaster. Elife. 2020;9:1–26. https://doi.org/10.7554/ELIFE.52416.
Article
CAS
Google Scholar
Fefelova EA, Pleshakova IM, Mikhaleva EA, Pirogov SA, Poltorachenko VA, Abramov YA, et al. Impaired function of rDNA transcription initiation machinery leads to derepression of ribosomal genes with insertions of R2 retrotransposon. Nucleic Acids Res. 2022;50:867–84. https://doi.org/10.1093/NAR/GKAB1276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simon L, Rabanal FA, Dubos T, Oliver C, Lauber D, Poulet A, et al. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucleic Acids Res. 2018;46:3019–33. https://doi.org/10.1093/NAR/GKY163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song W, Joo M, Yeom J-H, Shin E, Lee M, Choi H-K, et al. Divergent rRNAs as regulators of gene expression at the ribosome level. Nat Microbiol 2019 43. 2019;4:515–26. https://doi.org/10.1038/s41564-018-0341-1.
Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT, et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci Adv. 2018;4:eaao0665. https://doi.org/10.1126/SCIADV.AAO0665.
Park PU, Defossez P-A, Guarente L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19:3848–56. https://doi.org/10.1128/MCB.19.5.3848.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM. Mechanisms of rDNA copy number maintenance. Trends Genet. 2019;35:734–42.
Article
CAS
Google Scholar
Preuss SB, Costa-Nunes P, Tucker S, Pontes O, Lawrence RJ, Mosher R, et al. Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell. 2008;32:673–84. https://doi.org/10.1016/J.MOLCEL.2008.11.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pontvianne F, Blevins T, Chandrasekhara C, Feng W, Stroud H, Jacobsen SE, et al. Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis. Genes Dev. 2012;26:945–57. https://doi.org/10.1101/GAD.182865.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi T. How does genome instability affect lifespan?: roles of rDNA and telomeres. Genes Cells. 2011;16:617–24. https://doi.org/10.1111/J.1365-2443.2011.01519.X.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell. 2004;117:441–53. https://doi.org/10.1016/S0092-8674(04)00414-3.
Article
CAS
PubMed
Google Scholar
Mansisidor A, Molinar T, Srivastava P, Dartis DD, Pino Delgado A, Blitzblau HG, et al. Genomic copy-number loss is rescued by self-limiting production of DNA circles. Mol Cell. 2018;72:583-593.e4.
KOBAYASHI T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc Jpn Acad Ser B Phys Biol Sci 2014;90:119. https://doi.org/10.2183/PJAB.90.119.
Hillier LDW, Miller RD, Baird SE, Chinwalla A, Fulton LA, Koboldt DC, et al. Comparison of C elegans and C briggsae genome sequences reveals extensive conservation of chromosome organization and synteny PLoS Biol 2007;5:e167.
Shafin K, Pesout T, Lorig-roach R, Haukness M, Olsen HE, Armstrong J, et al. Efficient de novo assembly of eleven human genomes using PromethION sequencing and a novel nanopore toolkit. bioRxiv. 2019. https://doi.org/10.1101/715722.
Kuderna LFK, Lizano E, Julià E, Gomez-Garrido J, Serres-Armero A, Kuhlwilm M, et al. Selective single molecule sequencing and assembly of a human Y chromosome of African origin. Nat Commun. 2019;10:4.
Article
CAS
Google Scholar
Stevens L, Félix M-A, Beltran T, Braendle C, Caurcel C, Fausett S, et al. Comparative genomics of 10 new Caenorhabditis species. Evol Lett. 2019;3:217–36.
Article
Google Scholar
Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592:737–46. https://doi.org/10.1038/s41586-021-03451-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang X-J, et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research. 2017;6:100. https://doi.org/10.12688/f1000research.10571.1.
Gibbons JG, Branco AT, Godinho SA, Yu S, Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc Natl Acad Sci. 2015;112:2485–90. https://doi.org/10.1073/pnas.1416878112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stage DE, Eickbush TH. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res. 2007;17:1888–97.
Article
CAS
Google Scholar
Picard B, Wegnez M. Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex. Proc Natl Acad Sci U S A. 1979;76:241–5.
Article
CAS
Google Scholar
Hall AN, Turner TN, Queitsch C. Thousands of high-quality sequencing samples fail to show meaningful correlation between 5S and 45S ribosomal DNA arrays in humans. Sci Reports 2021 111. 2021;11:1–12. https://doi.org/10.1038/s41598-020-80049-y.
Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J. Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp. 2012;e4019. https://doi.org/10.3791/4019.
Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016;11:e0163962.
Article
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26:589–95. https://doi.org/10.1093/bioinformatics/btp698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28-36. https://doi.org/10.1111/2041-210X.12628.
Wickham H. ggplot2. Springer-Verlag New York; 2011.
R Core Team. R: A Language and Environment for Statistical Computing. 2019. https://www.r-project.org.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
Google Scholar
Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21(3):487-93.
Gabdank I, Ramakrishnan S, Villeneuve AM, Fire AZ. A streamlined tethered chromosome conformation capture protocol. BMC Genomics. 2016;17. https://doi.org/10.1186/s12864-016-2596-3.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
Google Scholar
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution hi-C experiments. Cell Syst. 2016;3:95–8.
Article
CAS
Google Scholar
Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.
Article
CAS
Google Scholar
Zhao Z, Boyle TJ, Liu Z, Murray JI, Wood WB, Waterston RH. A negative regulatory loop between microRNA and Hox gene controls posterior identities in Caenorhabditis elegans. PLoS Genet. 2010;6:e1001089. https://doi.org/10.1371/journal.pgen.1001089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Ho VWS, Wong M-K, Huang X, Chan L-Y, Ng HCK, et al. Establishment of signaling interactions with cellular resolution for every cell cycle of embryogenesis. Genetics. 2018;209:37–49. https://doi.org/10.1534/genetics.118.300820.
Article
CAS
PubMed
PubMed Central
Google Scholar