Arzani A, Ashraf M. Cultivated Ancient Wheats (Triticum spp): A Potential Source of Health-Beneficial Food Products. Compr Rev Food Sci Food Safety. 2017;16(3):477–88.
Article
Google Scholar
FAOSTAT. 2017. http://www.fao.org/faostat/en/#compare
Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 2013;5(3):291–317.
Article
Google Scholar
Charmet G. Wheat domestication: lessons for the future. CR Biol. 2011;334(3):212–20.
Article
Google Scholar
Palamarchuk A. Selection strategies for traits relevant for winter and facultative durum wheat. Durum wheat breeding: current approaches and future strategies. New York: Food Products Press; 2005. p. 599–644.
Google Scholar
Royo C, Nazco R, Villegas D. The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf) landraces affects their agronomic performance. Genet Resour Crop Evol. 2014;61(7):1345–58.
Article
Google Scholar
Negisho K, Shibru S, Pillen K, Ordon F, Wehner G. Genetic diversity of Ethiopian durum wheat landraces. PLoS ONE. 2021;16(2):e0247016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kidane YG, Hailemariam BN, Mengistu DK, Fadda C, Pè ME, Dell'Acqua M. Genome-Wide Association Study of Septoria tritici Blotch Resistance in Ethiopian Durum Wheat Landraces. Front Plant Sci. 2017;8:1586. https://doi.org/10.3389/fpls.2017.01586.
Fabricant F. Rome’s glory is now Tunisia’s. New York Times 1998. https://www.nytimes.com.
Oliveira HR, Campana MG, Jones H, Hunt HV, Leigh F, Redhouse DI, Lister DL, Jones MK. Tetraploid wheat landraces in the Mediterranean basin: taxonomy, evolution and genetic diversity. PLoS ONE. 2012;7(5):e37063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis DK: Resurrecting the granary of Rome: environmental history and French colonial expansion in North Africa: Ohio University Press; 2007.
Ouaja M, Aouini L, Bahri B, Ferjaoui S, Medini M, Marcel TC, Hamza S. Identification of valuable sources of resistance to Zymoseptoria tritici in the Tunisian durum wheat landraces. Eur J Plant Pathol. 2020;156(2):647–61.
Article
CAS
Google Scholar
Kamel S, Cherif M: Tan spot of wheat in Northern Tunisia: distribution, prevalence, incidence and severity. Cereal Research Communications 2021.
McDonald BA, Mundt CC. How knowledge of pathogen population biology informs management of Septoria tritici blotch. Phytopathology. 2016;106(9):948–55.
Article
PubMed
Google Scholar
Abdedayem W. M’barek S, Souissi A, Laribi M, Araar C, Kouki H, Fakhfakh M, Yahyaoui A: Septoria tritici blotch disease progression and physiological traits variation in durum wheat variety mixtures. J New Sci. 2021;80:4664–74.
Google Scholar
Berraies S, Ammar K, Salah Gharbi M, Yahyaoui A, Rezgui S. Quantitative inheritance of resistance to Septoria tritici blotch in durum wheat in Tunisia. Chilean J Agri Res. 2014;74(1):35–40.
Article
Google Scholar
Hamada W. First isolation of the Mycosphaerella graminicola teleomorph stage causing Septoria leaf blotch on wheat in Tunisia. New Dis Rep. 2014;29:18–18.
Article
Google Scholar
Meamiche Neddaf H, Aouini L, Bouznad Z, Kema GH. Equal distribution of mating type alleles and the presence of strobilurin resistance in algerian zymoseptoria tritici field populations. Plant Dis. 2017;101(4):544–9.
Article
PubMed
Google Scholar
Hassine M, Siah A, Hellin P, Cadalen T, Halama P, Hilbert J-L, Hamada W, Baraket M, Yahyaoui A, Legrève A. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity. Fungal Biol. 2019;123(10):763–72.
Article
CAS
PubMed
Google Scholar
Boukef S, McDonald BA, Yahyaoui A, Rezgui S, Brunner PC. Frequency of mutations associated with fungicide resistance and population structure of Mycosphaerella graminicola in Tunisia. Eur J Plant Pathol. 2012;132(1):111–22.
Article
CAS
Google Scholar
Singh RP, Herrera-Foessel S, Huerta-Espino J, Singh S, Bhavani S, Lan C, Basnet BR. Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. J Integr Agric. 2014;13(2):255–61.
Article
CAS
Google Scholar
Singh R, Huerta-Espino J, Bhavani S, Herrera-Foessel S, Singh D, Singh P, Velu G, Mason R, Jin Y, Njau P. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica. 2011;179(1):175–86.
Article
Google Scholar
Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science. 2013;341(6147):783–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Rouse MN, Zhang W, Jin Y, Akhunov E, Wei Y, Dubcovsky J. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet. 2015;128(4):645–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajgain P, Rouse M, Bulli P, Bhavani S, Gordon T, Wanyera R, Njau P, Legesse W, Anderson J, Pumphrey M. Erratum to: Association mapping of North American spring wheat breeding germplasm reveals loci conferring resistance to Ug99 and other African stem rust races. BMC Plant Biol. 2016;16(1):1–9.
Article
Google Scholar
Kingsbury N. Hybrid: the history and science of plant breeding: University of Chicago Press; 2009. p. 512.
Mondal S, Rutkoski JE, Velu G, Singh PK, Crespo-Herrera LA, Guzmán C, Bhavani S, Lan C, He X, Singh RP. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front Plant Sci. 2016;7:991. https://doi.org/10.3389/fpls.2016.00991.
Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A: Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot. 2015;66(12):3477–86. https://doi.org/10.1093/jxb/erv122.
Aoun M, Kolmer JA, Rouse MN, Elias EM, Breiland M, Bulbula WD, Chao S, Acevedo M. Mapping of novel leaf rust and stem rust resistance genes in the Portuguese durum wheat landrace PI 192051. G3: Genes, Genomes, Genet. 2019;9(8):2535–47.
Article
CAS
Google Scholar
Alemu SK, Huluka AB, Tesfaye K, Haileselassie T, Uauy C. Genome-wide association mapping identifies yellow rust resistance loci in Ethiopian durum wheat germplasm. PLoS ONE. 2021;16(5):e0243675.
Article
CAS
PubMed
PubMed Central
Google Scholar
Royo C, Ammar K, Soriano JM, Villegas D. Agronomic, physiological and genetic changes associated with evolution, migration and modern breeding in durum wheat. Front Plant Sci. 2021;12:1318.
Article
Google Scholar
Ghaneie A, Mehrabi R, Safaie N, Abrinbana M, Saidi A, Aghaee M. Genetic variation for resistance to septoria tritici blotch in Iranian tetraploid wheat landraces. Eur J Plant Pathol. 2012;132(2):191–202.
Article
Google Scholar
Porras R, Pérez-de-Luque A, Sillero J, Miguel-Rojas C. Behavior of Spanish durum wheat genotypes against Zymoseptoria tritici: resistance and susceptibility. Span J Agric Res. 2021;19(3): e1002.
Article
Google Scholar
Brown JK, Chartrain L, Lasserre-Zuber P, Saintenac C. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genetic Biololgy. 2015;79:33–41.
Article
CAS
Google Scholar
Yang N, McDonald MC, Solomon PS, Milgate AW. Genetic mapping of Stb19, a new resistance gene to Zymoseptoria tritici in wheat. Theor Appl Genet. 2018;131(12):2765–73.
Article
CAS
PubMed
Google Scholar
Kema GH, van Silfhout CH. Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem III. Comparative seedling and adult plant experiments. Phytopathology. 1997;87(3):266–72.
Article
CAS
PubMed
Google Scholar
Kema G, Annone JG, Sayoud R, Van Silfhout CH, Van Ginkel M, De Bree J. Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem I. Interactions between pathogen isolates and host cultivars. Phytopathology. 1996;86(2):200–12.
Article
Google Scholar
Kema G, Annone J, Sayoud R, Van Silfhout C, Van Ginkel M, De Bree J. Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I: Interactions between pathogen isolates and host cultivars. Phytopathology. 1996;86(2):200–12.
Article
Google Scholar
Tabib Ghaffary SM. Efficacy and mapping of resistance to Mycosphaerella graminicola in wheat. PhD dissertation Wageningen University; 2011. https://edepot.wur.nl/169465.
Ballini E, Tavaud M, Ducasse A, Sanchez D, Paux E, Kitt J, Charmet G, Audigeos D, Roumet P, David J. Genome wide association mapping for resistance to multiple fungal pathogens in a panel issued from a broad composite cross-population of tetraploid wheat Triticum turgidum. Euphytica. 2020;216:1–17.
Article
CAS
Google Scholar
El Haddad N, Kabbaj H, Zaïm M, El Hassouni K, Tidiane Sall A, Azouz M, Ortiz R, Baum M, Amri A, Gamba F. Crop wild relatives in durum wheat breeding: Drift or thrift? Crop Sci. 2021;61(1):37–54.
Article
CAS
Google Scholar
Team RC: R. A language and environment for statistical computing. 2013.
Google Scholar
Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. Package ‘corrplot.’ Statistician. 2017;56:316–24.
Fones H, Gurr S. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genet Biol. 2015;79:3–7.
Article
PubMed
PubMed Central
Google Scholar
Aouini L. Durum wheat and septoria tritici blotch: genes and prospects for breeding. PhD dissertation Wageningen University 2018. https://doi.org/10.18174/443719.
Arraiano L, Brading P, Brown J. A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol. 2001;50(3):339–46.
Article
Google Scholar
Berraies S, Gharbi MS, Belzile F, Yahyaoui A, Hajlaoui MR, Trifi M, Jean M, Rezgui S. High genetic diversity of Mycospaherella graminicola (Zymoseptoria tritici) from a single wheat field in Tunisia as revealed by SSR markers. Afr J Biotechnol. 2013;12(12):1344–9.
Kema GHJ, Mirzadi Gohari A, Aouini L, Gibriel HAY, Ware SB, van den Bosch F, Manning-Smith R, Alonso-Chavez V, Helps J, Ben M’Barek S, et al. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nat Genet. 2018;50(3):375–80.
Article
CAS
PubMed
Google Scholar
Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol. 2017;214(2):619–31.
Article
CAS
PubMed
Google Scholar
Saintenac C, Lee W-S, Cambon F, Rudd JJ, King RC, Marande W, Powers SJ, Bergès H, Phillips AL, Uauy C, et al. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet. 2018;50(3):368–74.
Article
CAS
PubMed
Google Scholar
Lin Y, Gnanesh BN, Chong J, Chen G, Beattie AD, Mitchell Fetch JW, Kutcher HR, Eckstein PE, Menzies JG, Jackson EW. A major quantitative trait locus conferring adult plant partial resistance to crown rust in oat. BMC Plant Biol. 2014;14(1):250.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hou L, Chen X, Wang M, See DR, Chao S, Bulli P, Jing J. Mapping a Large Number of QTL for Durable Resistance to Stripe Rust in Winter Wheat Druchamp Using SSR and SNP Markers. PLoS ONE. 2015;10(5):e0126794.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Qie Y, Li X, Wang M, Chen X. Genome-Wide Mapping of Quantitative Trait Loci Conferring All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Landrace PI 181410. Int J Mol Sci. 2020;21(2):478.
Article
CAS
PubMed Central
Google Scholar
Tahir S, Zia I, Dilshad I, Fayyaz M, Noureen N, Farrakh S. Identification of stripe rust resistant genes and their validation in seedling and adult plant glass house tests. Genet Resour Crop Evol. 2020;67(4):1025–36.
Article
CAS
Google Scholar
Han G, Liu S, Wang J, Jin Y, Zhou Y, Luo Q, Liu H, Zhao H, An D. Identification of an elite wheat-rye T1RS· 1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Dis. 2020. https://doi.org/10.1094/PDIS-02-20-0323-RE.
Prasad P, Savadi S, Bhardwaj SC, Gupta PK. The progress of leaf rust research in wheat. Fungal Biol. 2020;124(6):537–50. https://doi.org/10.1016/j.funbio.2020.02.013.
McCartney C, Brûlé-Babel A, Lamari L, Somers D. Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theor Appl Genet. 2003;107(7):1181–6.
Article
CAS
PubMed
Google Scholar
Ghaffary SMT, Faris JD, Friesen TL, Visser RG, van der Lee TA, Robert O, Kema GH. New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet. 2012;124(1):125–42.
Article
CAS
Google Scholar
Ghaffary SMT, Robert O, Laurent V, Lonnet P, Margalé E, van der Lee TA, Visser RG, Kema GH. Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor Appl Genet. 2011;123(5):741–54.
Article
PubMed
Google Scholar
Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco JO, Schlatter AR, Goodwin SB. Molecular mapping of the Stb4 gene for resistance to septoria tritici blotch in wheat. Phytopathology. 2004;94(11):1198–206.
Article
CAS
PubMed
Google Scholar
Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM. Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola)in the hexaploid wheat ’Synthetic 6x’. Theor Appl Genet. 2001;103(5):758–64.
Article
CAS
Google Scholar
Goudemand E, Laurent V, Duchalais L, Tabib Ghaffary S, Kema G, Lonnet P, Margalé E, Robert O: Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat (Triticum aestivum L.). Mol Breeding 2013, 32(3).
Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T. Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology. 2011;101(10):1209–16.
Article
CAS
PubMed
Google Scholar
Goodwin SB, Cavaletto JR, Hale IL, Thompson I, Xu SS, Adhikari TB, Dubcovsky J. A New Map Location of Gene for Resistance to Septoria Tritici Blotch in Wheat. Crop Sci. 2015;55(1):35–43.
Article
CAS
PubMed
Google Scholar
Adhikari TB, Wallwork H, Goodwin SB. Microsatellite Markers Linked to the and Genes for Resistance to Septoria Tritici Blotch in Wheat. Crop Sci. 2004;44(4):1403–11.
Article
CAS
Google Scholar
Chartrain L, Sourdille P, Bernard M, Brown J. Identification and location of Stb9, a gene for resistance to septoria tritici blotch in wheat cultivars Courtot and Tonic. Plant Pathol. 2009;58(3):547–55.
Article
CAS
Google Scholar
Odilbekov F, Armoniené R, Koc A, Svensson J, Chawade A. GWAS-Assisted Genomic Prediction to Predict Resistance to Septoria Tritici Blotch in Nordic Winter Wheat at Seedling Stage. Front Genet. 2019;10:1224.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radecka-Janusik M, Czembor PC. Genetic mapping of quantitative trait loci (QTL) for resistance to Septoria tritici blotch in a winter wheat cultivar Liwilla. Euphytica. 2014;200(1):109–25.
Article
CAS
Google Scholar
Stadlmeier M, Hartl L, Mohler V. Usefulness of a multiparent advanced generation intercross population with a greatly reduced mating design for genetic studies in winter wheat. Front Plant Sci. 1825;2018:9.
Google Scholar
Arraiano L, Balaam N, Fenwick P, Chapman C, Feuerhelm D, Howell P, Smith S, Widdowson J, Brown J. Contributions of disease resistance and escape to the control of Septoria tritici blotch of wheat. Plant Pathol. 2009;58(5):910–22.
Article
Google Scholar
Tuberosa R: Mapping QTLs for Partial Resistance to Zymoseptoria tritici in Durum Wheat. In: Plant and Animal Genome XXII Conference: 2014: Plant and Animal Genome; 2014.
Ferjaoui S, M’Barek S, Bahri B, Slimane R, Hamza S. Identification of resistance sources to septoria tritici blotch in old Tunisian durum wheat germplasm appliad for the analysis of the Zymoseptoria tritici-durum wheat interaction. J Plant Pathol. 2015;97(3):471–81.
Google Scholar
Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol. 2011;49:465–81.
Article
CAS
PubMed
Google Scholar
Mundt CC. Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol. 2014;27:446–55.
Article
PubMed
Google Scholar
Gautam T, Dhillon GS, Saripalli G, Singh VP, Prasad P, Kaur S, Chhuneja P, Sharma P, Balyan H, Gupta P. Marker-assisted pyramiding of genes/QTL for grain quality and rust resistance in wheat (Triticum aestivum L.). Mol Breeding. 2020;40:1–14.
Article
CAS
Google Scholar
Chartrain L, Brading P, Brown J. Presence of the Stb6 gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathol. 2005;54(2):134–43.
Article
CAS
Google Scholar
Chartrain L, Berry S, Brown J. Resistance of wheat line Kavkaz-K4500 L. 6. A. 4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology. 2005;95(6):664–71.
Article
CAS
PubMed
Google Scholar
Chartrain L, Brading P, Widdowson J, Brown J. Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology. 2004;94(5):497–504.
Article
CAS
PubMed
Google Scholar
Li ZK, Jiang XL, Peng T, Shi CL, Han SX, Tian B, Zhu ZL, Tian JC. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.). Genet Mol Res. 2014;13(1):1412-24. https://doi.org/10.4238/2014.
Farokhzadeh S, Fakheri BA, Nezhad NM, Tahmasebi S, Mirsoleimani A, McIntyre CL. Genetic control of some plant growth characteristics of bread wheat (Triticum aestivum L.) under aluminum stress. Genes Genom. 2020;42(3):245–61.
Article
CAS
Google Scholar
Li Z, Pinson S, Stansel J, Park W. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet. 1995;91(2):374–81.
Article
CAS
PubMed
Google Scholar
Lecomte L, Duffé P, Buret M, Servin B, Causse M. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet. 2004;109(3):658–68.
Article
CAS
PubMed
Google Scholar
Wang D, Zhu J, Li Z, Paterson A. Mapping QTLs with epistatic effects and QTL× environment interactions by mixed linear model approaches. Theor Appl Genet. 1999;99(7–8):1255–64.
Article
Google Scholar
Lin H, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet. 2000;101(7):1021–8.
Article
CAS
Google Scholar
Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974;14(6):415–21.
Article
Google Scholar
Kema G, Sayoud R, Annone J, Van Silfhout C. Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. II: analysis of interactions between pathogen isolates and host cultivars. Phytopathology. 1996;86(2):213–20.
Article
Google Scholar
Madden LV, Hughes G, Bosch F. The study of plant disease epidemics: American Phytopathological Society (APS Press); 2007. https://doi.org/10.1094/9780890545058.
Eyal Z, Brown MB. A quantitative method for estimating density of Septaria tritici pycnidia on wheat leaves. Phytopathology. 1976;66:11–4.
Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C, Aschenbrenner-Kilian M, Evers M, Peng K, Cayla C, Hok P, Uszynski G. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol Biol. 2012;888:67–89. https://doi.org/10.1007/978-1-61779-870-2_5.
Van Ooijen J. JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations Kyazma BV, Wageningen, Netherlands: Scietific research; 2006. p. 33.
Kosambi DD. The estimation of map distances from recombination values. Ann Eugenic. 1943;12(1):172–5. https://doi.org/10.1111/j.1469-1809.1943.tb02321.x.
Stam P. Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J. 1993;3(5):739–44.
Article
CAS
Google Scholar
Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019;51(5):885–95.
Article
CAS
PubMed
Google Scholar
De Mendiburu F, Simon R: Agricolae-Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. In.: PeerJ PrePrints; 2015.
Chu C-G, Chao S, Friesen T, Faris J, Zhong S, Xu S. Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breeding. 2010;25(2):327–38.
Article
CAS
Google Scholar
Institute S: Base SAS 9.4 procedures guide: SAS Institute; 2015.
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015;3(3):269–83.
Article
Google Scholar
Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8.
Article
CAS
PubMed
Google Scholar
Wickham H. Elegant graphics for data analysis. Media. 2009;35(211):10.1007.
Google Scholar