Axtell MJ, Meyers BC. Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell. 2018;30:272–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev. 2002;16:1616–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartel DP. MicroRNAs. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
Devers EA, Branscheid A, May P, Krajinski F. Stars and symbiosis: MicroRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol. 2011;156:1990–2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Q, Wang F, Axtell MJ. Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell. 2014;26:741–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell. 2003;15:2730–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science (New York, NY). 2002;297:2053–6.
Article
CAS
Google Scholar
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics. 2017;18:481.
Article
PubMed
PubMed Central
Google Scholar
Balyan S, Kumar M, Mutum RD, Raghuvanshi U, Agarwal P, Mathur S, et al. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Sci Rep. 2017;7:15446.
Article
PubMed
PubMed Central
Google Scholar
Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, et al. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics. 2015;16:197.
Article
PubMed
PubMed Central
Google Scholar
Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, et al. Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Front. Plant Sci. 2017;8:864.
Google Scholar
Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, et al. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol. 2011;75:93–105.
Article
CAS
PubMed
Google Scholar
Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, et al. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci. 2012;109:1790.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thiebaut F, Rojas CA, Grativol C, Motta MR, Vieira T, Regulski M, et al. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize. BMC Genomics. 2014;15:766.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Li P, Cao X, Wang X, Zhang A, Li X. Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun. 2009;378:799–803.
Article
CAS
PubMed
Google Scholar
Wu P, Wu Y, Liu C-C, Liu L-W, Ma F-F, Wu X-Y, et al. Identification of arbuscular mycorrhiza (AM)-responsive microRNAs in tomato. Front. Plant Sci. 2016;7:429.
Google Scholar
Xu Y, Zhu S, Liu F, Wang W, Wang X, Han G, et al. Identification of arbuscular mycorrhiza fungi responsive microRNAs and their regulatory network in maize. Int J Mol Sci. 2018;19(10):3201.
Article
PubMed Central
Google Scholar
Smith SE, Read DJ. Mycorrhizal symbiosis: academic press; 2010.
Google Scholar
Redecker D, Kodner R, Graham LE. Glomalean fungi from the Ordovician. Science. 2000;289:1920–1.
Article
CAS
PubMed
Google Scholar
Van Der Heijden MG, Horton TR. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol. 2009;97:1139–50.
Article
Google Scholar
Li H, Smith SE, Holloway RE, Zhu Y, Smith FA. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol. 2006;172:536–43.
Article
CAS
PubMed
Google Scholar
Lauressergues D, Delaux P-M, Formey D, Lelandais-Brière C, Fort S, Cottaz S, et al. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J. 2012;72:512–22.
Article
CAS
PubMed
Google Scholar
Hofferek V, Mendrinna A, Gaude N, Krajinski F, Devers EA. MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula. BMC Plant Biol. 2014;14:199.
Article
PubMed
PubMed Central
Google Scholar
Couzigou J-M, Lauressergues D, André O, Gutjahr C, Guillotin B, Bécard G, et al. Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis. Cell Host Microbe. 2017;21:106–12.
Article
CAS
PubMed
Google Scholar
Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, et al. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell. 2011;23:3853–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo Y, Guo Z, Li L. Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol. 2013;380:133–44.
Article
CAS
PubMed
Google Scholar
Stroup JA, Sanderson MA, Muir JP, McFarland MJ, Reed RL. Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress. Bioresour Technol. 2003;86:65–72.
Article
CAS
PubMed
Google Scholar
Porter CL. An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in Central Oklahoma. Ecology. 1966;47:980–92.
Article
Google Scholar
Kering MK, Biermacher JT, Butler TJ, Mosali J, Guretzky JA. Biomass yield and nutrient responses of switchgrass to phosphorus application. Bioenergy Res. 2012;5:71–8.
Article
CAS
Google Scholar
Ker K, Seguin P, Driscoll BT, Fyles JW, Smith DL. Evidence for enhanced N availability during switchgrass establishment and seeding year production following inoculation with rhizosphere endophytes. Arch Agron Soil Sci. 2014;60:1553–63.
Article
CAS
Google Scholar
McGonigle T, Miller M, Evans D, Fairchild G, Swan J. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol. 1990;115:495–501.
Article
CAS
PubMed
Google Scholar
Johnson NC. Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl. 1993;3(4):749–57.
Article
PubMed
Google Scholar
Xie F, Frazier TP, Zhang B. Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta. 2010;232:417–34.
Article
CAS
PubMed
Google Scholar
Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, et al. Characterization of drought-and heat-responsive microRNAs in switchgrass. Plant Sci. 2016;242:214–23.
Article
CAS
PubMed
Google Scholar
Xie F, Stewart CN Jr, Taki FA, He Q, Liu H, Zhang B. High-throughput deep sequencing shows that micro RNA s play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnol J. 2014;12:354–66.
Article
CAS
PubMed
Google Scholar
Matts J, Zheng Y, Jagadeeswaran G, Sunkar R. MicroRNA expression profiles in the emerging tillers and inflorescence of switchgrass, a major feedstock for biofuel production. Indian J Plant Physiol. 2017;22:558–65.
Article
CAS
Google Scholar
Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics. 2019;20:488.
Article
PubMed
PubMed Central
Google Scholar
Dhaka N, Sharma S, Vashisht I, Kandpal M, Sharma MK, Sharma R. Small RNA profiling from meiotic and post-meiotic anthers reveals prospective miRNA-target modules for engineering male fertility in sorghum. Genomics. 2020;112:1598–610.
Article
CAS
PubMed
Google Scholar
Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, Napier JD, et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature. 2021;590:438–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilon M. The copper microRNAs. New Phytol. 2017;213:1030–5.
Article
CAS
PubMed
Google Scholar
Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem. 2008;283:15932–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M. Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem. 2007;282:16369–78.
Article
CAS
PubMed
Google Scholar
Clark R, Zeto S. Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr. 2000;23:867–902.
Article
CAS
Google Scholar
Naya L, Paul S, Valdés-López O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, et al. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One. 2014;9:e84416.
Article
PubMed
PubMed Central
Google Scholar
De Luis A, Markmann K, Cognat V, Holt DB, Charpentier M, Parniske M, et al. Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. Plant Physiol. 2012;160:2137–54.
Article
PubMed
PubMed Central
Google Scholar
Sunkar R, Kapoor A, Zhu J-K. Posttranscriptional induction of two cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18:2051–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruiz-Lozano JM, AzcÓN R, Palma JM. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol. 1996;134:327–33.
Article
CAS
Google Scholar
Talaat NB, Shawky BT. Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J Plant Nutr Soil Sci. 2014;177:199–207.
Article
CAS
Google Scholar
Liu A, Chen S, Wang M, Liu D, Chang R, Wang Z, et al. Arbuscular mycorrhizal fungus alleviates chilling stress by boosting redox poise and antioxidant potential of tomato seedlings. J Plant Growth Regul. 2016;35:109–20.
Article
CAS
Google Scholar
Kumar M, Yadav V, Tuteja N, Johri AK. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology. 2009;155:780–90.
Article
CAS
PubMed
Google Scholar
Xu W, Meng Y, Wise RP. Mla-and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. New Phytol. 2014;201:1396–412.
Article
CAS
PubMed
Google Scholar
Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta. 2009;229:1009–14.
Article
CAS
PubMed
Google Scholar
Lu Y, Feng Z, Bian L, Xie H, Liang J. miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Funct Plant Biol. 2011;38:44–53.
Article
CAS
Google Scholar
Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M, Novero M, et al. Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci Rep. 2018;8:1–18.
Article
CAS
Google Scholar
Gourion B, Berrabah F, Ratet P, Stacey G. Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 2015;20:186–94.
Article
CAS
PubMed
Google Scholar
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, et al. LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell. 2013;25:3976–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu S, Li Q, Wei H, Chang M-J, Tunlaya-Anukit S, Kim H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci. 2013;110:10848–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, et al. Laccase properties, physiological functions, and evolution. Int J Mol Sci. 2020;21(3):966.
Article
CAS
PubMed Central
Google Scholar
Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev. 1996;96:2563–606.
Article
CAS
PubMed
Google Scholar
Wang CY, Zhang S, Yu Y, Luo YC, Liu Q, Ju C, et al. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J. 2014;12:1132–42.
Article
CAS
PubMed
Google Scholar
Bennett AE, Grussu D, Kam J, Caul S, Halpin C. Plant lignin content altered by soil microbial community. New Phytol. 2015;206:166–74.
Article
CAS
PubMed
Google Scholar
Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, et al. Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling. J Integr Plant Biol. 2014;56:1164–78.
Article
CAS
PubMed
Google Scholar
Vangelisti A, Natali L, Bernardi R, Sbrana C, Turrini A, Hassani-Pak K, et al. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Sci Rep. 2018;8:4.
Article
PubMed
PubMed Central
Google Scholar
Parádi I, van Tuinen D, Morandi D, Ochatt S, Robert F, Jacas L, et al. Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula. Mol Plant Microbe Interac. 2010;23:1175–83.
Article
Google Scholar
Pumplin N, Harrison MJ. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol. 2009;151:809–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho Plágaro T, Molinero Rosales N, Fariña Flores D, Villena Díaz M, García-Garrido JM. Identification and expression analysis of GRAS transcription factor genes involved in the control of arbuscular mycorrhizal development in tomato. Front Plant Sci. 2019;10:268.
Article
PubMed
PubMed Central
Google Scholar
Hossain MS, Hoang NTH, Yan Z, Tóth K, Meyers BC, Stacey G. Characterization of the spatial and temporal expression of two soybean miRNAs identifies SCL6 as a novel regulator of soybean nodulation. Front Plant Sci. 2019;10:475.
Article
PubMed
PubMed Central
Google Scholar
Serba D, Wu L, Daverdin G, Bahri BA, Wang X, Kilian A, et al. Linkage maps of lowland and upland tetraploid switchgrass ecotypes. Bioenergy Res. 2013;6:953–65.
Article
Google Scholar
Weaver JM, Sujo LSM, Feldmann KA. A simplified technique for the propagation of shoots from nodes of switchgrass (Panicum virgatum L.) genotypes. Bioenergy Res. 2014;7:1351–7.
Article
Google Scholar
Hoagland DR, Arnon DI. The water-culture method for growing plants without soil, Circular California Agricultural Experiment Station, vol. 347. 2nd edit ed; 1950.
Google Scholar
Willmann MR, Berkowitz ND, Gregory BD. Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes--GMUCT 2.0. Methods (San Diego, Calif). 2014;67(1):64–73.
Article
CAS
Google Scholar
Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:39–40.
Google Scholar
Gollotte A, van Tuinen D, Atkinson D. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza. 2004;14:111–7.
Article
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
Google Scholar
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31:439–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hannon G. Fastx-Toolkit. FASTQ/a short-reads preprocessing tools. 2010. http://hannonlab.cshl.edu/fastx_toolkit/index.html. Accessed 13 Sept 2021.
Google Scholar
Kuang Z, Wang Y, Li L, Yang X. miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants. Bioinformatics. 2019;35:2521–2.
Article
CAS
PubMed
Google Scholar
Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32(suppl_1):D109–D11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
Google Scholar
Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics. 2008;25:130–1.
Article
PubMed
PubMed Central
Google Scholar