Sheldon IM, Noakes D, Dobson H. The influence of ovarian activity and uterine involution determined by ultrasonography on subsequent reproductive performance of dairy cows. Theriogenology. 2000;54(3):409–19.
Article
CAS
PubMed
Google Scholar
Macklon NS, Fauser B. Aspects of ovarian follicle development throughout life. Horm Res. 2000;52(4):161–70.
Google Scholar
Vanderhyden T. Eppig: mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod. 1992;46(6):1196–204.
Kempisty B, Ziółkowska A, Ciesiółka S, Piotrowska H, Antosik P, Bukowska D, et al. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J Biol Regul Homeost Agents. 2014;28(4):625–35.
CAS
PubMed
Google Scholar
Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice - ScienceDirect. Dev Biol. 2007;305(1):300–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, et al. Cytoplasmic and nuclear maturation of oocytes in mammals – living in the shadow of cells developmental capability. Med J Cell Biol. 2018;6(1):13–17.
Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte–somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004;82:431–46.
Article
PubMed
CAS
Google Scholar
Li R. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000;63(3):839–45.
Article
CAS
PubMed
Google Scholar
Macaulay AD, Gilbert I, Caballero J, Barreto R, Fournier E, Tossou P, et al. The gametic synapse: RNA transfer to the bovine oocyte. Biol Reprod. 2014;91(4):90.
Article
PubMed
CAS
Google Scholar
Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;1:35–48.
Article
CAS
Google Scholar
Biase FH, Kimble KM. Functional signaling and gene regulatory networks between the oocyte and the surrounding cumulus cells. BMC Genomics. 2018;19(1):351.
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31(43):4577–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiaoli K, Duan Y, Sang Y, Hanwen Z, Yiran L. LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol. 2019;234(6):9105–17.
Paraskevopoulou M, Hatzigeorgiou AG. Analyzing MiRNA–LncRNA interactions. Methods Mol Biol (Clifton, N.J.). 2016;1402:271–86.
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79(1):351–79.
Article
CAS
PubMed
Google Scholar
Miao X, Luo Q, Zhao H, Qin X. Genome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu black goats to explore the regulation of fecundity. Sci Rep. 2016;6:37983.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caponnetto A, Battaglia R, Ferrara C, Vento ME, Borzì P, Paradiso M, et al. Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells. J Assist Reprod Genet. 2022;39(4):919–31.
Article
PubMed
Google Scholar
Miao X, Luo Q, Zhao H, Qin X. An integrated analysis of miRNAs and methylated genes encoding mRNAs and lncRNAs in sheep breeds with different fecundity. Front Physiol. 2017;8:1049.
Liu KS, Li TP, Hua T, Mao XD, Chen YJ. Advances of long noncoding RNAs-mediated regulation in reproduction. Chin Med J. 2018;131(2):226–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Cherry JM. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa G. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Chen S, Zhou Y, Chen Y, Jia G. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server issue):W345–9.
Article
PubMed
PubMed Central
Google Scholar
Mistry J, Bateman A, Finn RD. Predicting active site residue annotations in the Pfam database. BMC Bioinformatics. 2007;8:298.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41(6):e74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffiths-Jones S, Grocock RJ, Dongen SV, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature; 2006.
Google Scholar
Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Biogeosciences. 2010;26:139–40.
CAS
Google Scholar
Wang J, Cao Y, Lu X, Wang X, Kong X, Bo C, et al. Identification of the regulatory role of lncRNA SNHG16 in myasthenia gravis by constructing a competing endogenous RNA network. Mol Ther Nucleic Acids. 2020;19:1123–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang R, Han B, Li Q, Yuan Y, Li J, Sun D. Using RNA sequencing to identify putative competing endogenous RNAs (ceRNAs) potentially regulating fat metabolism in bovine liver. Sci Rep. 2017;7(1):6396.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zuo J, Wang Y, Zhu B, Luo Y, Wang Q, Gao L. Analysis of the coding and non-coding RNA transcriptomes in response to bell pepper chilling. Int J Mol Sci. 2018;19(7):2001.
Xu XW, Zhou XH, Wang RR, Peng WL, An Y, Chen LL. Functional analysis of long intergenic non-coding RNAs in phosphate-starved rice using competing endogenous RNA network. Sci Rep. 2016;6:20715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiang Q, Zhang G, Tao M, Qian W, Wang J, Ye Z, et al. Supplementary information for: The yak genome and adaptation to life at high-altitude. Nat Genet. 2012;44(8):946–9.
Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9.
Article
CAS
PubMed
Google Scholar
Eppig JJ, Chesnel F, Hirao Y, O'Brien MJ, Wigglesworth K. Oocyte control of granulosa cell development: how and why. Hum Reprod. 1997;12(11 Suppl):127–32.
CAS
PubMed
Google Scholar
Sammad A, Hu L, Luo H, Abbas Z, Umer S, Zhao S, et al. Investigation of metabolome underlying the biological mechanisms of acute heat stressed granulosa cells. Int J Mol Sci. 2022;23(4):2146.
Su YQ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):32–42.
Conti M, Hsieh M, Zamah AM, Oh JS. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol. 2012;356(1–2):65–73.
Article
CAS
PubMed
Google Scholar
Amireault P. Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol Pharmacol. 2005;68(6):1678–87.
Article
CAS
PubMed
Google Scholar
Wigglesworth K, Lee KB, O”Brien MJ, Peng J, Matzuk MM, Eppig JJ. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc Natl Acad Sci U S A. 2013;110(39):E3723–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuente RDL, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol. 2001;229(1):224–36.
Article
CAS
Google Scholar
Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.
Article
CAS
PubMed
Google Scholar
Lv X, He C, Huang C, Wang H, Hua G, Wang Z, et al. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development. FASEB J. 2019;33(9):10049–64.
Vanderhyden BC, Telfer EE, Eppig JJ. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod. 1992;46(6):1196–204.
Article
CAS
PubMed
Google Scholar
Russell MC, Cowan RG, Harman RM, Walker AL, Quirk SM. The hedgehog signaling pathway in the mouse ovary. Biol Reprod. 2007;77(2):226.
Article
CAS
PubMed
Google Scholar
Warma A, Lussier JG, Ndiaye K. Tribbles Pseudokinase 2 (TRIB2) regulates expression of binding partners in bovine granulosa cells. Int J Mol Sci. 2021;22(4):1533.
Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet rho GTPases. Genes Dev. 2009;23(3):265–77.
Article
CAS
PubMed
Google Scholar
Bonnet A, Cabau C, Bouchez O, Sarry J, Marsaud N, Foissac S, et al. An overview of gene expression dynamics during early ovarian folliculogenesis: specificity of follicular compartments and bi-directional dialog. BMC Genomics. 2013;14(1):904.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun. 2015;6:6779.
Article
CAS
PubMed
Google Scholar
Ying H. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med. 2018;22(12):5768–75.
Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18(22):2699–711.
Article
CAS
PubMed
Google Scholar
Sekulic A, Haluska P, Miller AJ, De Lamo JG, Ejadi S, Pulido JS, et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin Proc. 2008;83(7):825–46.
Article
CAS
PubMed
Google Scholar
Dai J, Wei RJ, Li R, Feng JB, Liu PS. A study of CCND1 with epithelial ovarian cancer cell proliferation and apoptosis. Eur Rev Med Pharm Sci. 2016;20(20):4230.
CAS
Google Scholar
Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R. P21 is a universal inhibitor of cyclin kinases. Nature. 1993;366(6456):701–4.
Labaer J, Garrett M, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 1997;11(7):847.
Article
CAS
PubMed
Google Scholar
Dash BC, El-Deiry WS. Phosphorylation of P21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol. 2005;25(8):3364–87.
Bunz F. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282(5393):1497–501.
Article
CAS
PubMed
Google Scholar
Song S, Zhang J, Su Q, Zhang W, Zhuang W. Downregulation of ITGA6 confers to the invasion of multiple myeloma and promotes progression to plasma cell leukaemia. Br J Cancer. 2021;124(11): 1843–53.