Dong F, Lin ZC, Lin J, Ming R, Zhang WP. Chloroplast Genome of Rambutan and Comparative Analyses in Sapindaceae. Plants. 2021;10(2):283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. Front Plant Sci. 2015;6(6):781.
PubMed
PubMed Central
Google Scholar
Qian J, Song J, Gao H, Zhu Y, Xu J, Pang XH, Yao H, Sun C, Li XE, Li CY, Liu JY, Xu HB, Chen SL. The complete chloroplast genome sequence of the medicinal plant salvia miltiorrhiza. PLoS One. 2013;8(2):e57607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng H, Li JF, Zhang H, Cai BH, Gao ZH, Qiao YS, Mi L. The complete chloroplast genome sequence of strawberry (Fragaria×ananassa Duch.) and comparison with related species of Rosaceae. PeerJ. 2017;5:e3919.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wanga VO, Dong X, Oulo MA, Mkala EM, Yang JX, Onjalalaina GE, Gichua MK, Kirika PM, Gituru RW, Hu GW, Wang QF. Complete Chloroplast Genomes of Acanthochlamys bracteata (China) and Xerophyta (Africa) (Velloziaceae): Comparative Genomics and Phylogenomic Placement. Front Plant Sci. 2021;12:691833.
Article
PubMed
PubMed Central
Google Scholar
Chen YL, Liu Y, Yang QE, Nordenstam B, Jeffrey C. Sinosenecio B. Nord. In: Wu ZY & Raven PH. (Eds.) Flora of China. 2011; vols. 20–21:464–481.
Liu Y, Yang QE. Sinosenecio jiangxiensis (Asteraceae), a new species from Jiangxi. China Botanical Studies. 2012;53(3):401–14.
Google Scholar
Liu Y, Xu Y, Yang QE. Sinosenecio peltatus (Asteraceae, Senecioneae), a remarkably distinctive new species from Guangdong. China Phytotaxa. 2019;406(3):206–12.
Article
Google Scholar
Zou CY, Liu Y, Liu Y. Sinosenecio ovatifolius (Asteraceae), a new species from Guangxi. China Phytotaxa. 2020;460(2):149–59.
Article
Google Scholar
Liu Y. Systematics of the genus Sinosenecio B. Nord. (Asteraceae). Ph.D. thesis, Institute of Botany, Chinese Academy of Sciences, Beijing. 2010. p. 277.
Google Scholar
Liu Y, Yang QE. Cytology and its systematic implications in Sinosenecio (Senecioneae-Asteraceae) and two closely related genera. Plant Syst Evol. 2011;291:7–24.
Article
Google Scholar
Liu Y, Yang QE. Floral micromorphology and its systematic implications in the genus Sinosenecio (Senecioneae-Asteraceae). Plant Syst Evol. 2011;291:243–56.
Article
Google Scholar
Gong W, Liu Y, Chen J, Hong Y, Kong HH. DNA barcodes identify Chinese medicinal plants and detect geographical patterns of Sinosenecio (Asteraceae). J Syst Evol. 2016;54(1):83–91.
Article
Google Scholar
Nguyen-Dinh S, Sai TZT, Nawaz G, Lee K, Kang H. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). J Plant Physiol. 2016;201:85–94.
Article
CAS
PubMed
Google Scholar
Wang YH, Wang S, Liu YL, Yuan QJ, Sun JH, Guo LP. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genomics. 2021;22(1):03.
Article
Google Scholar
Mohanta TK, Mishra AK, Khan A, Hashem A, Abd_Allah EF, Al-Harrasi A. Gene loss and evolution of the plastome. Genes (Basel). 2020;11(10):1133.
Deguilloux MF, Pemonge MH, Petit RJ. Use of chloroplast microsatellites to differentiate oak populations. Ann For Sci. 2004;61(8):825–30.
Article
Google Scholar
Redwan RM, Saidin A, Kumar SV. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC Plant Biol. 2015;15(1):196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao X, Zhang X, Meng H, Li J, Zhang D, Liu C. Comparative chloroplast genomes of Paris Sect. Marmorata: insights into repeat regions and evolutionary implications. BMC Genomics. 2018;19(Suppl 10):878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome. 2011;54(8):663–73.
Article
PubMed
Google Scholar
Cavalier-Smith T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol. 2002;12(2):R62–4.
Article
CAS
PubMed
Google Scholar
Lee J, Kang Y, Shin SC, Park H, Lee H. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv. PLoS One. 2014;9(3):e92501.
Article
PubMed
PubMed Central
CAS
Google Scholar
Timme RE, Kuehl JV, Boore JL, Jansen RK. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot. 2007;94(3):302–12.
Article
CAS
PubMed
Google Scholar
Weng ML, Blazier JC, Govindu M, Jansen RK. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol. 2014;31(3):645–59.
Article
CAS
PubMed
Google Scholar
Hershberg R, Petrov DA. Selection on Codon Bias. Annu Rev Genet. 2008;42(1):287–99.
Article
CAS
PubMed
Google Scholar
Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH. Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci. 2004;101(10):3480–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grantham R, Gautier C, Gouy M, Mercier R, Pave A. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 1980;8(1):R49–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985;2(1):13–34.
CAS
PubMed
Google Scholar
Gao B, Yuan L, Tang T, Hou J, Pan K, Wei N. The complete chloroplast genome sequence of Alpinia oxyphylla Miq. and comparison analysis within the Zingiberaceae family. PLOS One. 2019;14(6):e0218817.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyu X, Liu Y. Nonoptimal Codon Usage Is Critical for Protein Structure and Function of the Master General Amino Acid Control Regulator CPC-1. Mol Biol Physiol. 2020;11:e02605-e2620.
CAS
Google Scholar
Rüdinger M, Funk HT, Rensing SA, Maier UG, Knoop V. RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol Genet Genomics. 2009;281(5):473–81.
Article
PubMed
CAS
Google Scholar
Shikanai T. RNA editing in plant organelles: Machinery, physiological function and evolution. Cell Mol Life Sci. 2006;63(6):698–708.
Article
CAS
PubMed
Google Scholar
Maier RM, Zeltz P, Kossel H, Bonnard G, Gualberto JM, Grienenberger JM. RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol. 1996;32(1–2):343–65.
Article
CAS
PubMed
Google Scholar
Wang X, Zhou T, Bai G, Zhao Y. Complete chloroplast genome sequence of Fagopyrum dibotrys: genome features, comparative analysis and phylogenetic relationships. Sci Rep. 2018;8(1):12379.
Article
PubMed
PubMed Central
CAS
Google Scholar
Asaf S, Khan AL, Lubna, Khan A, Khan A, Khan G, Lee IJ, Al-Harrasi A. Expanded inverted repeat region with large scale inversion in the first complete plastid Genome sequence of Plantago ovata. Sci Rep. 2020;10:3881.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Tan W, Zhang H, Gao H, Tian X. Complete chloroplast genomes of ampelopsis humulifolia and ampelopsis japonica: molecular structure, comparative analysis, and phylogenetic analysis. Plants. 2019;8:410.
Article
CAS
PubMed Central
Google Scholar
Sun J, Dong X, Cao Q, Xu T, Zhu M, Sun J, Dong T, Ma D, Han Y, Li Z. A systematic comparison of eight new plastome sequences from Ipomoea L. PeerJ. 2019;7:e6563.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khayi S, Gaboun F, Pirro S, Tatusova T, El Mousadik A, Ghazal H, Mentag R. Complete chloroplast genome of argania spinosa: structural organization and phylogenetic relationships in sapotaceae. Plants. 2020;9(10):1354.
Article
CAS
PubMed Central
Google Scholar
Wolfe KH, Li W, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci. 1987;84(24):9054–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 2002;18(9):486–7.
Article
PubMed
Google Scholar
Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15(12):496–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carbonell-Caballero J, Alonso R, Ibañez V, Terol J, Talon M, Dopazo J. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus citrus. Mol Biol Evol. 2015;32(8):2015–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Chen GX, Yang QE. Sinosenecio baojingensis (Asteraceae), a new species from Hunan. China Botanical Studies. 2009;50:107–13.
CAS
Google Scholar
Zhang DG, Liu Y, Yang QE. Sinosenecio jishouensis (Compositae), a new species from north-west Hunan, China. Botanical Studies. 2008;49:287–94.
Google Scholar
Jin JJ, Yu WB, Yang JB, Song Y, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21:241.
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45(W1):W6–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): a Tool for the Easy Generation of High-Quality Custom Graphical Maps of Plastid and Mitochondrial Genomes. Curr Genet. 2007;52:267–74.
Article
CAS
PubMed
Google Scholar
Beier S, Thiel T, Munch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33(16):2583–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Wan JM. SSRHunter: development of a local searching software for SSR sites. Yi Chuan. 2005;27(5):808–10.
PubMed
Google Scholar
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29(22):4633–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amiryousefi A, Hyvonen J, Poczai P. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics. 2018;34(17):3030–1.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mower JP. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009;37(Web Server):W253–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004;32(Web Server):W273–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar