Parikka KJ, Romancer ML, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus–host relationships in a variety of ecosystems. Biol Rev. 2017;92(2):1081–100.
Article
PubMed
Google Scholar
Bohannan BJM, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett. 2000;3(4):362–77.
Article
Google Scholar
Harrison E, Brockhurst MA. Ecological and Evolutionary Benefits of Temperate Phage: What Does or Doesn’t Kill You Makes You Stronger. BioEssays. 2017;39(12):1700112.
Article
Google Scholar
Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses. 2017;9(3):50.
Article
PubMed Central
Google Scholar
van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ. Changes in Bacterial and Eukaryotic Community Structure after Mass Lysis of Filamentous Cyanobacteria Associated with Viruses. Appl Environ Microbiol. 1999;65(2):795–801.
Article
PubMed
PubMed Central
Google Scholar
Thingstad TF, Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol. 1997;24(13):19–27.
Article
Google Scholar
Castillo JA, Secaira-Morocho H, Maldonado S, Sarmiento KN. Diversity and Evolutionary Dynamics of Antiphage Defense Systems in Ralstonia solanacearum Species Complex. Front Microbiol. 2020;11:961.
Article
PubMed
PubMed Central
Google Scholar
Lenski RE, Levin BR. Constraints on the Coevolution of Bacteria and Virulent Phage: A Model, Some Experiments, and Predictions for Natural Communities. Am Nat. 1985;125(4):585–602.
Article
Google Scholar
Filipiak M, Łoś JM, Łoś M. Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J Appl Genet. 2020;61(1):131–40.
Article
CAS
PubMed
Google Scholar
Osterhout RE, Figueroa IA, Keasling JD, Arkin AP. Global analysis of host response to induction of a latent bacteriophage. BMC Microbiol. 2007;7(1):82.
Article
PubMed
PubMed Central
Google Scholar
Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol. 2000;299(1):27–51.
Article
CAS
PubMed
Google Scholar
Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, et al. Characterization of a P1-Like Bacteriophage Carrying an SHV-2 Extended-Spectrum β-Lactamase from an Escherichia coli Strain. Antimicrob Agents Chemother. 2014;58(11):6550–7.
Article
PubMed
PubMed Central
Google Scholar
Iannelli F, Santagati M, Santoro F, Oggioni MR, Stefani S, Pozzi G. Nucleotide Sequence of Conjugative Prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Front Microbiol. 2014;5:687.
Article
PubMed
PubMed Central
Google Scholar
Frazão N, Sousa A, Lässig M, Gordo I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc Natl Acad Sci. 2019;116(36):17906–15.
Article
PubMed
PubMed Central
Google Scholar
Busby B, Kristensen DM, Koonin EV. Contribution of phage-derived genomic islands to the virulence of facultative bacterial pathogens. Environ Microbiol. 2013;15(2):307–12.
Article
CAS
PubMed
Google Scholar
Hacker J, Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2001;2(5):376–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner PL, Livny J, Neely MN, Acheson DWK, Friedman DI, Waldor MK. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol Microbiol. 2002;44(4):957–70.
Article
CAS
PubMed
Google Scholar
Das B, Bischerour J, Barre FX. VGJɸ integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci. 2011;108(6):2516–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol. 2015;13(10):641–50.
Article
CAS
PubMed
Google Scholar
Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 2016;10(12):2854–66.
Article
PubMed
PubMed Central
Google Scholar
Ramisetty BCM, Sudhakari PA. Bacterial ‘Grounded’ Prophages: Hotspots for Genetic Renovation and Innovation. Front Genet. 2019;10:65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varani AM, Monteiro-Vitorello CB, Nakaya HI, Van Sluys MA. The role of prophage in plant-pathogenic bacteria. Annu Rev Phytopathol. 2013;51:429–51.
Article
CAS
PubMed
Google Scholar
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci. 2003;100(18):10181–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Mello Varani A, Souza RC, Nakaya HI, de Lima WC, de Paula Varani LG, Kitajima EW, et al. Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation. PloS One. 2008;3(12):e4059.
Article
PubMed
PubMed Central
Google Scholar
da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature. 2002;417(6887):459–63.
Article
PubMed
Google Scholar
Jain M, Fleites LA, Gabriel DW. Prophage-Encoded Peroxidase in ‘Candidatus Liberibacter asiaticus’ Is a Secreted Effector That Suppresses Plant Defenses. Mol Plant-Microbe Interactions®. 2015;28(12):1330–7.
Article
CAS
Google Scholar
Jain M, Munoz-Bodnar A, Zhang S, Gabriel DW. A Secreted ‘Candidatus Liberibacter asiaticus’ Peroxiredoxin Simultaneously Suppresses Both Localized and Systemic Innate Immune Responses In Planta. Mol Plant-Microbe Interactions®. 2018;31(12):1312–22.
Article
CAS
Google Scholar
Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp. Appl Environ Microbiol. 2019;85(2):e02050-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, et al. Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria. J Bacteriol. 2009;191(8):2501–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Summer EJ, Gill JJ, Upton C, Gonzalez CF, Young R. Role of phages in the pathogenesis of Burkholderia, or ‘Where are the toxin genes in Burkholderia phages?’. Curr Opin Microbiol. 2007;10(4):410–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad AA, Stulberg MJ, Mershon JP, Mollov DS, Huang Q. Molecular and biological characterization of ϕRs551, a filamentous bacteriophage isolated from a race 3 biovar 2 strain of Ralstonia solanacearum. PLoS One. 2017;12(9):e0185034.
Article
PubMed
PubMed Central
Google Scholar
Czajkowski R. May the Phage be With You? Prophage-Like Elements in the Genomes of Soft Rot Pectobacteriaceae: Pectobacterium spp. and Dickeya spp. Front Microbiol. 2019;10:138.
Article
PubMed
PubMed Central
Google Scholar
Roszniowski B, McClean S, Drulis-Kawa Z. Burkholderia cenocepacia Prophages-Prevalence, Chromosome Location and Major Genes Involved. Viruses. 2018;10(6):297.
Article
PubMed Central
Google Scholar
Kumar R, Kumar Yadav S, Swain DM, Jha G. Burkholderia gladioli strain NGJ1 deploys a prophage tail-like protein for mycophagy. Microb Cell. 2017;5(2):116–8.
Article
PubMed
PubMed Central
Google Scholar
Zoledowska S, Motyka-Pomagruk A, Sledz W, Mengoni A, Lojkowska E. High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genomics. 2018;19(1):751.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alič Š, Pédron J, Dreo T, Van Gijsegem F. Genomic characterisation of the new Dickeya fangzhongdai species regrouping plant pathogens and environmental isolates. BMC Genomics. 2019;20(1):34.
Article
PubMed
PubMed Central
Google Scholar
Gonçalves OS, de Oliveira Souza F, Bruckner FP, Santana MF, Alfenas-Zerbini P. Widespread distribution of prophages signaling the potential for adaptability and pathogenicity evolution of Ralstonia solanacearum species complex. Genomics. 2021;113(3):992–1000.
Article
PubMed
Google Scholar
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13(6):614–29.
Article
PubMed
PubMed Central
Google Scholar
Genin S. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 2010;187(4):920–8.
Article
PubMed
Google Scholar
Hayward AC. Biology and Epidemiology of Bacterial Wilt Caused by Pseudomonas Solanacearum. Annu Rev Phytopathol. 1991;29(1):65–87.
Article
CAS
PubMed
Google Scholar
How complex is the Ralstonia solanacearum species complex. In: Bacterial wilt disease and the Ralstonia solanacearum species complex. Saint Paul: APS Press; 2005.
Google Scholar
Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E, Allen C, et al. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics. 2010;11(1):379.
Article
PubMed
PubMed Central
Google Scholar
Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol. 2014;64(9):3087–103.
Article
CAS
PubMed
Google Scholar
Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D, Mitra R, et al. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol. 2018;20(4):1330–49.
Article
CAS
PubMed
Google Scholar
Williamson L, Nakaho K, Hudelson B, Allen C. Ralstonia solanacearum Race 3, Biovar 2 Strains Isolated from Geranium Are Pathogenic on Potato. Plant Dis. 2002;86(9):987–91.
Article
CAS
PubMed
Google Scholar
Colburn-Clifford JM, Scherf JM, Allen C. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Appl Environ Microbiol. 2010;76(22):7392–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peyraud R, Cottret L, Marmiesse L, Gouzy J, Genin S. A Resource Allocation Trade-Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant Pathogen Ralstonia solanacearum. PLOS Pathog. 2016;12(10):e1005939.
Article
PubMed
PubMed Central
Google Scholar
Addy HS, Ahmad AA, Huang Q. Molecular and Biological Characterization of Ralstonia Phage RsoM1USA, a New Species of P2virus, Isolated in the United States. Front Microbiol. 2019;10:267.
Article
PubMed
PubMed Central
Google Scholar
Askora A, Kawasaki T, Fujie M, Yamada T. Lysogenic Conversion of the Phytopathogen Ralstonia solanacearum by the P2virus ϕRSY1. Front Microbiol. 2017;8:2212.
Article
PubMed
PubMed Central
Google Scholar
Fujiwara A, Kawasaki T, Usami S, Fujie M, Yamada T. Genomic Characterization of Ralstonia solanacearum Phage φRSA1 and Its Related Prophage (φRSX) in Strain GMI1000. J Bacteriol. 2008;190(1):143–56.
Article
CAS
PubMed
Google Scholar
Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T. The filamentous phage ϕRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato. Phytopathology. 2012;102(3):244–51.
Article
PubMed
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30(15):2114–20.
Article
CAS
Google Scholar
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13(6):e1005595.
Article
PubMed
PubMed Central
Google Scholar
Clarke CR, Studholme DJ, Hayes B, Runde B, Weisberg A, Cai R, et al. Genome-Enabled Phylogeographic Investigation of the Quarantine Pathogen Ralstonia solanacearum Race 3 Biovar 2 and Screening for Sources of Resistance Against Its Core Effectors. Phytopathology. 2015;105(5):597–607.
Article
CAS
PubMed
Google Scholar
Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21(1):180.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.
Article
CAS
PubMed
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. 2018;35(2):518–22.
Article
CAS
PubMed
Google Scholar
Cellier G, Remenant B, Chiroleu F, Lefeuvre P, Prior P. Phylogeny and population structure of brown rot- and Moko disease-causing strains of Ralstonia solanacearum phylotype II. Appl Environ Microbiol. 2012;78(7):2367–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 2012;40(16):e126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9(1):37.
Article
PubMed
PubMed Central
Google Scholar
Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39(5):578–85.
Article
CAS
PubMed
Google Scholar
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16-21.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Tortuero E, Sutton TDS, Velayudhan V, Shkoporov AN, Draper LA, Stockdale SR, et al. VIGA: a sensitive, precise and automatic de novo VIral Genome Annotator. bioRxiv. 2018. https://doi.org/10.1101/277509.
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinforma Oxf Engl. 2015;31(22):3691–3.
Article
CAS
Google Scholar
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17(1):132.
Article
PubMed
PubMed Central
Google Scholar
Katz LS, Griswold T, Morrison SS, Caravas JA, Zhang S, den Bakker HC, et al. Mashtree: a rapid comparison of whole genome sequence files. J Open Source Softw. 2019;4(44):1762.
Article
Google Scholar
Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One. 2016;11(10):e0163962.
Article
PubMed
PubMed Central
Google Scholar
Hutchinson MC, Cagua EF, Balbuena JA, Stouffer DB, Poisot T. paco: implementing Procrustean Approach to Cophylogeny in R. Methods Ecol Evol. 2017;8(8):932–40.
Article
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gligorijević V, Renfrew PD, Kosciolek T, Leman JK, Berenberg D, Vatanen T, et al. Structure-based protein function prediction using graph convolutional networks. Nat Commun. 2021;12(1):3168.
Article
PubMed
PubMed Central
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database issue):D490-495.
Article
CAS
PubMed
Google Scholar
Sabbagh CRR, Carrere S, Lonjon F, Vailleau F, Macho AP, Genin S, et al. Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ. 2019;7:e7346.
Article
PubMed
PubMed Central
Google Scholar
Urban M, Cuzick A, Seager J, Wood V, Rutherford K, Venkatesh SY, et al. PHI-base: the pathogen–host interactions database. Nucleic Acids Res. 2020;48(D1):D613–20.
CAS
PubMed
Google Scholar
Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G. Interactive microbial genome visualization with GView. Bioinforma Oxf Engl. 2010;26(24):3125–6.
Article
CAS
Google Scholar
Microsoft Corporation. Microsoft Excel. 2018. Available from: https://office.microsoft.com/excel.
Google Scholar
R Core Team. A language and environment for statistical computing. Vienna: Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org/.
Google Scholar
RStudio Team. RStudio: Integrated Development for R. Boston: RStudio, PBC; 2020. Available from: http://www.rstudio.com/.
Google Scholar
Inkscape Project. Inkscape. 2020. Available from: https://inkscape.org.
Google Scholar
Prokchorchik M, Pandey A, Moon H, Kim W, Jeon H, Jung G, et al. Host adaptation and microbial competition drive Ralstonia solanacearum phylotype I evolution in the Republic of Korea. Microb Genomics. 2020;6(11):mgen000461.
Article
Google Scholar
Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics. 2013;14(1):859.
Article
PubMed
PubMed Central
Google Scholar
Glickman C, Kammlade SM, Hasan NA, Epperson LE, Davidson RM, Strong M. Characterization of integrated prophages within diverse species of clinical nontuberculous mycobacteria. Virol J. 2020;17(1):124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almpanis A, Swain M, Gatherer D, McEwan N. Correlation between bacterial G+C content, genome size and the G+C content of associated plasmids and bacteriophages. Microb Genomics. 2018;4(4):e000168.
Article
Google Scholar
Bobay LM, Touchon M, Rocha EPC. Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci U S A. 2014;111(33):12127–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bleriot I, Trastoy R, Blasco L, Fernández-Cuenca F, Ambroa A, Fernández-García L, et al. Genomic analysis of 40 prophages located in the genomes of 16 carbapenemase-producing clinical strains of Klebsiella pneumoniae. Microb Genomics. 2020;6(5):e000369.
Article
Google Scholar
Roux S, Krupovic M, Daly RA, Borges AL, Nayfach S, Schulz F, et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat Microbiol. 2019;4(11):1895–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Wei Z, Yang K, Wang J, Jousset A, Xu Y, et al. Phage combination therapies for bacterial wilt disease in tomato. Nat Biotechnol. 2019;37(12):1513–20.
Article
CAS
PubMed
Google Scholar
Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T. Biocontrol of Ralstonia solanacearum by Treatment with Lytic Bacteriophages. Appl Environ Microbiol. 2011;77(12):4155–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mottawea W, Duceppe MO, Dupras AA, Usongo V, Jeukens J, Freschi L, et al. Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping. Front Microbiol. 2018;9:836.
Article
PubMed
PubMed Central
Google Scholar
Brooks MR, Padilla-Vélez L, Khan TA, Qureshi AA, Pieper JB, Maddox CW, et al. Prophage-Mediated Disruption of Genetic Competence in Staphylococcus pseudintermedius. mSystems. 2020;5(1):e00684-19.
Article
PubMed
PubMed Central
Google Scholar
Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, et al. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol. 2009;191(11):3462–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salloum M, van der Mee-Marquet N, Valentin-Domelier AS, Quentin R. Diversity of prophage DNA regions of Streptococcus agalactiae clonal lineages from adults and neonates with invasive infectious disease. PLoS ONE. 2011;6(5):e20256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vu HTK, Benjakul S, Vongkamjan K. Characterization of Listeria prophages in lysogenic isolates from foods and food processing environments. PLoS One. 2019;14(4):e0214641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamudio R, Haigh RD, Ralph JD, De Ste CM, Tasara T, Zurfluh K, et al. Lineage-specific evolution and gene flow in Listeria monocytogenes are independent of bacteriophages. Environ Microbiol. 2020;22(12):5058–72.
Article
CAS
PubMed
Google Scholar
Forcone K, Coutinho FH, Cavalcanti GS, Silveira CB. Prophage Genomics and Ecology in the Family Rhodobacteraceae. Microorganisms. 2021;9(6):1115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claisse O, Chaïb A, Jaomanjaka F, Philippe C, Barchi Y, Lucas PM, et al. Distribution of Prophages in the Oenococcus oeni Species. Microorganisms. 2021;9(4):856.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brüssow H, Canchaya C, Hardt WD. Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion. Microbiol Mol Biol Rev. 2004;68(3):560–602.
Article
PubMed
PubMed Central
Google Scholar
Cooke FJ, Wain J, Fookes M, Ivens A, Thomson N, Brown DJ, et al. Prophage Sequences Defining Hot Spots of Genome Variation in Salmonella enterica Serovar Typhimurium Can Be Used To Discriminate between Field Isolates. J Clin Microbiol. 2007;45(8):2590–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet. 2012;379(9835):2489–99.
Article
PubMed
PubMed Central
Google Scholar
Trotereau A, Boyer C, Bornard I, Pécheur MJB, Schouler C, Torres-Barceló C. High genomic diversity of novel phages infecting the plant pathogen Ralstonia solanacearum, isolated in Mauritius and Reunion islands. Sci Rep. 2021;11:5382.
Castillo JA, Greenberg JT. Evolutionary Dynamics of Ralstonia solanacearum. Appl Environ Microbiol. 2007;73(4):1225–38.
Article
CAS
PubMed
Google Scholar
Li J, Wang N. The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri. BMC Microbiol. 2019;12(1):31.
Article
Google Scholar
Elhenawy W, Scott NE, Tondo ML, Orellano EG, Foster LJ, Feldman MF. Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum. Glycobiology. 2016;26(3):301–11.
CAS
PubMed
Google Scholar
Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T. Loss of Virulence of the Phytopathogen Ralstonia solanacearum Through Infection by φRSM Filamentous Phages. Phytopathology®. 2012;102(5):469–77.
Article
CAS
Google Scholar
Guarischi-Sousa R, Puigvert M, Coll NS, Siri MI, Pianzzola MJ, Valls M, et al. Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031. Stand Genomic Sci. 2016;15(11):7.
Article
Google Scholar
Castillo JA, Agathos SN. A genome-wide scan for genes under balancing selection in the plant pathogen Ralstonia solanacearum. BMC Evol Biol. 2019;19(1):123.
Article
PubMed
PubMed Central
Google Scholar
Stephenson SAM, Brown PD. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli. Front Public Health. 2016;4:131.
Article
PubMed
PubMed Central
Google Scholar
Romero H, Serrano E, Hernández-Tamayo R, Carrasco B, Cárdenas PP, Ayora S, et al. Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein. Front Microbiol. 2020;11:92.
Article
PubMed
PubMed Central
Google Scholar
Pérez-Reytor D, Pavón A, Lopez-Joven C, Ramírez-Araya S, Peña-Varas C, Plaza N, et al. Analysis of the Zonula occludens Toxin Found in the Genome of the Chilean Non-toxigenic Vibrio parahaemolyticus Strain PMC53.7. Front Cell Infect Microbiol. 2020;10:482.
Article
PubMed
PubMed Central
Google Scholar
Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol. 2019;10:331.
Article
PubMed
PubMed Central
Google Scholar
Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep. 2019;20(6):e47427.
Article
PubMed
PubMed Central
Google Scholar
Kossykh VG, Schlagman SL, Hattman S. Comparative studies of the phage T2 and T4 DNA (N6-adenine) methyltransferases: amino acid changes that affect catalytic activity. J Bacteriol. 1997;179(10):3239–43.
Article
CAS
PubMed
PubMed Central
Google Scholar