Crismani W, Mercier R. What limits meiotic crossovers? Cell Cycle. 2012;11(19):3527–8. https://doi.org/10.4161/cc.21963.
Article
PubMed
PubMed Central
CAS
Google Scholar
He Y, Wang M, Dukowic-Schulze S, Zhou A, Tiang C-L, Shilo S, Sidhu GK, et al. Genomic Features Shaping the Landscape of Meiotic Double-Strand-Break Hotspots in Maize. Proc Natl Acad Sci. 2017;114(46):12231–6. https://doi.org/10.1073/pnas.1713225114.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kianian PMA, Wang M, Simons K, Ghavami F, He Y, Dukowic-Schulze S, Sundararajan A, et al. High-resolution crossover mapping reveals similarities and differences of male and female recombination in maize. Nat Commun. 2018;9(2370):1–10. https://doi.org/10.1038/s41467-018-04562-5.
Article
CAS
Google Scholar
Borde V. The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res. 2007;15(5):551–63. https://doi.org/10.1007/s10577-007-1147-9.
Article
PubMed
CAS
Google Scholar
Li W, Chen C, Markmann-Mulisch U, Timofejeva L, Schmelzer E, Ma H, Reiss B. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc Natl Acad Sci. 2004;101(29):10596–601. https://doi.org/10.1073/pnas.0404110101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The Molecular biology of meiosis in plants. Annu Rev Plant Biol. 2015;66(1):297–327. https://doi.org/10.1146/annurev-arplant-050213-035923.
Article
PubMed
CAS
Google Scholar
Wijeratne AJ, Chen C, Zhang W, Timofejeva L, Ma H. The Arabidopsis Thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol Biol Cell. 2006;17:1331–43.
Article
CAS
Google Scholar
Falque M, Anderson LK, Stack SM, Gauthier F, Martin OC. Two Types of Meiotic Crossovers Coexist in Maize. Plant Cell. 2010;21(12):3915–25. https://doi.org/10.1105/tpc.109.071514.
Article
CAS
Google Scholar
Mannuss A, Dukowic-Schulze S, Suer S, Hartung F, Pacher M, Puchta H. RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different Pathways of DNA repair in Arabidopsis Thaliana. Plant Cell. 2010;22(10):3318–30. https://doi.org/10.1105/tpc.110.078568.
Article
PubMed
PubMed Central
CAS
Google Scholar
Golubovskaya IN, Rachel Wang CJ, Timofejeva L, Zacheus Cande W. Maize Meiotic Mutants with Improper or Non-Homologous Synapsis Due to Problems in Pairing or Synaptonemal Complex Formation. J Exp Bot. 2011;62(5):1533–44. https://doi.org/10.1093/jxb/erq292.
Article
PubMed
CAS
Google Scholar
France MG, Enderle J, Röhrig S, Holger Puchta F, Franklin CH, Higgins JD. ZYP1 Is Required for Obligate Cross-over Formation and Cross-over Interference in Arabidopsis. Proc Natl Acad Sci. 2021;118(14):1–11. https://doi.org/10.1073/pnas.2021671118.
Article
CAS
Google Scholar
Kim J-H. Chromatin remodeling and epigenetic regulation in plant DNA damage repair. Int J Mol Sci. 2019;20(17):4093. https://doi.org/10.3390/ijms20174093.
Article
PubMed Central
CAS
Google Scholar
Bray CM, West CE. DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol. 2005;168(3):511–28. https://doi.org/10.1111/j.1469-8137.2005.01548.x.
Article
PubMed
CAS
Google Scholar
Hu Z, Cools T, De Veylder L. Mechanisms used by plants to cope with DNA damage. Annu Rev Plant Biol. 2016;67(1):439–62. https://doi.org/10.1146/annurev-arplant-043015-111902.
Article
PubMed
CAS
Google Scholar
Sidhu GK, Fang C, Olson MA, Falque M, Martin OC, Pawlowski WP. Recombination patterns in maize reveal limits to crossover homeostasis. Proc Natl Acad Sci. 2015;112(52):15982–7. https://doi.org/10.1073/pnas.1514265112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5. https://doi.org/10.1126/science.1178534.
Article
PubMed
CAS
Google Scholar
Russell WA. Registration of B70 and B73 parental lines of maize. Crop Sci. 1972;12(5):721–721.
Article
Google Scholar
Zuber MS. Registration of 20 maize parental lines. Crop Sci. 1973;13(6):779–80.
Article
Google Scholar
“Maize Inbred Lines Released by CIMMYT: A Compilation of 424 CIMMYT Maize Lines (CMLs).” 1999. Mexico: Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). https://repository.cimmyt.org/handle/10883/1336.
Dukowic-Schulze Stefanie, Garcia Nelson, Shunmugam Arun SK, Kagale Sateesh, Chen Changbin. “Isolating Male Meiocytes from Maize and Wheat for ‘-Omics’ Analyses.” In Plant Meiosis. 2020;2061. New York, NY: Humana. https://doi.org/10.1007/978-1-4939-9818-0_17.
Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Shujun Ou, Liu J, Ricci WA, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science. 2021;373:655–62.
Article
CAS
Google Scholar
Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, Song W, et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet. 2018;50(9):1289–95. https://doi.org/10.1038/s41588-018-0182-0.
Article
PubMed
CAS
Google Scholar
Ge SX, Jung D, Yao R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Edited by Alfonso Valencia Bioinformatics. 2020;36(8):2628–9. https://doi.org/10.1093/bioinformatics/btz931.
Article
CAS
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51. https://doi.org/10.1002/pro.3715.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51. https://doi.org/10.1093/nar/gkaa970.
Article
PubMed
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
Google Scholar
Luo W, Brouwer C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29(14):1830–1. https://doi.org/10.1093/bioinformatics/btt285.
Article
PubMed
PubMed Central
CAS
Google Scholar
Argueso JL, Wanat J, Gemici Z, Alani E. Competing crossover pathways act during meiosis in saccharomyces cerevisiae. Genetics. 2004;168(4):1805–16. https://doi.org/10.1534/genetics.104.032912.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsubouchi T, Zhao H, Shirleen Roeder G. The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev Cell. 2006;10(6):809–19. https://doi.org/10.1016/j.devcel.2006.04.003.
Article
PubMed
CAS
Google Scholar
Whitby MC. Making crossovers during meiosis. Biochem Soc Trans. 2005;33(6):1451–5.
Article
CAS
Google Scholar
Arrieta M, Willems G, DePessemier J, Colas I, Burkholz A, Darracq A, Vanstraelen S, et al. The effect of heat stress on sugar beet recombination. Theor Appl Genet. 2021;134(1):81–93. https://doi.org/10.1007/s00122-020-03683-0.
Article
PubMed
CAS
Google Scholar
Higgins JD, Osman K, Jones GH, Chris F, Franklin H. factors underlying restricted crossover localization in barley meiosis. Annu Rev Genet. 2014;48(1):29–47. https://doi.org/10.1146/annurev-genet-120213-092509.
Article
PubMed
CAS
Google Scholar
Osadchuk K, Cheng C-L, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. Plant Sci. 2021;312(November): 111035. https://doi.org/10.1016/j.plantsci.2021.111035.
Article
PubMed
CAS
Google Scholar
Dukowic-Schulze S, Harris A, Li J, Sundararajan A, Mudge J, Retzel EF, Pawlowski WP, Chen C. Comparative transcriptomics of early meiosis in Arabidopsis and maize. J Genet Genomics. 2014;41(3):139–52. https://doi.org/10.1016/j.jgg.2013.11.007.
Article
PubMed
Google Scholar
Dukowic-Schulze S, Sundararajan A, Mudge J, Ramaraj T, Farmer AD, Wang M, Sun Qi, et al. The transcriptome landscape of early maize meiosis. BMC Plant Biol. 2014;14(1):118. https://doi.org/10.1186/1471-2229-14-118.
Article
PubMed
PubMed Central
Google Scholar
Dukowic-Schulze S, Sundararajan A, Ramaraj T, Mudge J, Chen C. Sequencing-based large-scale genomics approaches with small numbers of isolated maize meiocytes. Front Plant Sci. 2014;5. https://doi.org/10.3389/fpls.2014.00057.
Dukowic-Schulze S, Sundararajan A, Ramaraj T, Kianian S, Pawlowski WP, Mudge J, Chen C. Novel Meiotic MiRNAs and Indications for a Role of PhasiRNAs in Meiosis. Front Plant Sci. 2016;7(June):762. https://doi.org/10.3389/fpls.2016.00762.
Article
PubMed
PubMed Central
Google Scholar
Nelms B, Walbot V. Defining the developmental program leading to meiosis in maize. Science. 2019;364:52–6.
Article
CAS
Google Scholar
Nelms B, Walbot V. Gametophyte Genome Activation Occurs at Pollen Mitosis I in Maize. Science. 2022;375:424–9.
Zhao Feiyun, Dayong Zhang, Yulong Zhao, Wei Wang, Hao Yang, Fuju Tai, Chaohai Li, Xiuli Hu. “The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses.” Frontiers in Plant Science. 2016;7 (October). https://doi.org/10.3389/fpls.2016.01471.
Magnard J-L, Yang M, Chen Y-C, Leary M, McCormick S. The Arabidopsis gene tardy asynchronous meiosis is required for the normal pace and synchrony of cell division during male meiosis. Plant Physiol. 2001;127(3):1157–66. https://doi.org/10.1104/pp.010473.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kakumanu A. Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissues as Revealed by Deep Sequencing. Blacksburg, Virginia: Virginia Polytechnic Institute and State University; 2012.
Google Scholar
Woodhouse MR, Cannon EK, Portwood JL, Harper LC, Gardiner JM, Schaeffer ML, Andorf CM. A pan-genomic approach to genome databases using maize as a model system. BMC Plant Biol. 2021;21(385):1–10. https://doi.org/10.1186/s12870-021-03173-5.
Article
Google Scholar
Lightfoot J, Testori S, Barroso C, Martinez-Perez E. Loading of Meiotic Cohesin by SCC-2 is required for early processing of DSBs and for the DNA damage checkpoint. Curr Biol. 2011;21(17):1421–30. https://doi.org/10.1016/j.cub.2011.07.007.
Article
PubMed
CAS
Google Scholar
Vos JW, Pieuchot L, Evrard J-L, Janski N, Bergdoll M, de Ronde D, Perez LH, Sardon T, Vernos I, Schmit A-C. The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. Plant Cell. 2008;20(10):2783–97. https://doi.org/10.1105/tpc.107.056796.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PVV, Reddy VR, Zhao D. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot. 2005;96(1):59–67. https://doi.org/10.1093/aob/mci149.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peet MM, Sato S, Gardner RG. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell Environ. 1998;21(2):225–31. https://doi.org/10.1046/j.1365-3040.1998.00281.x.
Article
Google Scholar
Reddy VR, Reddy KR, Baker DN. Temperature effect on growth and development of cotton during the fruiting period. Agron J. 1991;83(1):211–7. https://doi.org/10.2134/agronj1991.00021962008300010050x.
Article
Google Scholar
Kitsios G, Doonan JH. Cyclin dependent protein kinases and stress responses in plants. Plant Signal Behav. 2011;6(2):204–9. https://doi.org/10.4161/psb.6.2.14835.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hasanuzzaman M, Kamrun Nahar Md, Alam RR, Fujita M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int J Mol Sci. 2013;14(5):9643–84. https://doi.org/10.3390/ijms14059643.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kantidze OL, Velichko AK, Luzhin AV, Razin SV. “Heat Stress-Induced DNA Damage.” Acta Naturae. 2016;8(2):75–78. https://doi.org/10.32607/20758251-2016-8-2-75-78.
McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Qi, Flint-Garcia S, et al. Genetic properties of the maize nested association mapping population. Science. 2009;325(5941):737–40. https://doi.org/10.1126/science.1174320.
Article
PubMed
CAS
Google Scholar
Chen C, Retzel EF. “Analyzing the Meiotic Transcriptome Using Isolated Meiocytes of Arabidopsis Thaliana.” In Plant Meiosis. Methods in Molecular Biology (Methods and Protocols). 2013;990. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-333-6_20.
Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, Chilton J, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–44. https://doi.org/10.1093/nar/gky379.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-Seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
PubMed
CAS
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nat Biotechnol. 2015;33(3):290–5. https://doi.org/10.1038/nbt.3122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
PubMed
PubMed Central
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15:1–21. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
Google Scholar
Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M, Gallavotti A. The Boron Efflux Transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell. 2014;26(7):2962–77. https://doi.org/10.1105/tpc.114.125963.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P. Sparse Inflorescence1 Encodes a Monocot-Specific YUCCA-like Gene Required for Vegetative and Reproductive Development in Maize. Proc Natl Acad Sci USA. 2008;105(39):15196–201. https://doi.org/10.1073/pnas.0805596105.
Article
PubMed
PubMed Central
Google Scholar