Byrnes JR, Wolberg AS. New findings on venous thrombogenesis. Hamostaseologie. 2017;37:25–35.
Article
Google Scholar
Aggarwal A, Fullam L, Brownstein AP, Maynard GA, Ansell J, Varga EA, et al. Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE): Awareness and Prophylaxis Practices Reported by Patients with Cancer. Cancer Invest. 2015;33:405–10.
Article
Google Scholar
Ouriel K, Green RM, Greenberg RK, Clair DG. The anatomy of deep venous thrombosis of the lower extremity. J Vasc Surg. 2000;31:895–900.
Article
CAS
Google Scholar
Furie B, Furie BC. Mechanisms of thrombus formation. Mechanisms of Disease. N Engl J Med. 2008;359:938–49.
Article
CAS
Google Scholar
van Hinsbergh VWM. Endothelium - role in regulation of coagulation and inflammation. Semin Immunopathol. 2012;34:93–106.
Article
Google Scholar
Peng Z, Shu B, Zhang Y, Wang M. Endothelial response to pathophysiological stress. Arterioscler Thromb Vasc Biol. 2019;39:e233–43.
Article
CAS
Google Scholar
Turetz M, Sideris A, Friedman O, Triphathi N, Horowitz J. Epidemiology, pathophysiology, and natural history of pulmonary embolism. Semin Intervent Radiol. 2018;35:92–8.
Article
Google Scholar
Douketis JD. Prognosis in pulmonary embolism. Curr Opin Pulm Med. 2001;7:354–9.
Article
CAS
Google Scholar
Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension. Circulation. 2011;123:1788–830.
Article
Google Scholar
Martinez Licha CR, McCurdy CM, Maldonado SM, Lee LS. Current management of acute pulmonary embolism. Ann Thorac Cardiovasc Surg. 2020;26:65–71.
Article
Google Scholar
Weitz JI, Prandoni P, Verhamme P. Anticoagulation for patients with venous thromboembolism: when is extended treatment required? TH Open. 2020;4:e446–56.
Article
Google Scholar
Konstantinides S. Should thrombolytic therapy be used in patients with pulmonary embolism? Am J Cardiovasc Drugs. 2004;4:69–74.
Article
Google Scholar
Pai R, Fang Q, Tian G, Zhu B, Ge X. Expression and role of interleukin-1β and associated biomarkers in deep vein thrombosis. Exp Ther Med. 2021;22:1–8.
Article
Google Scholar
Tang Z, Wang X, Huang J, Zhou X, Xie H, Zhu Q, et al. Gene expression profiling of pulmonary artery in a rabbit model of pulmonary thromboembolism. PLoS ONE. 2016;11:1–16.
Article
Google Scholar
Feng R, Lu M, Xu J, Zhang F, Yang M, Luo P, et al. Pulmonary embolism and 529 human blood metabolites: genetic correlation and two-sample Mendelian randomization study. BMC Genom Data. 2022;23:1–9.
Article
Google Scholar
Gromadziński L, Paukszto Ł, Skowrońska A, Holak P, Smoliński M, Łopieńska-Biernat E, et al. Transcriptomic profiling of femoral veins in deep vein thrombosis in a porcine model. Cells. 2021;10:1–19.
Article
Google Scholar
Diaz JA, Obi AT, Myers DD, Wrobleski SK, Henke PK, Mackman N, et al. Critical Review of Mouse Models of Venous Thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:556–62.
Article
CAS
Google Scholar
Shi WY, Wu S, Hu LY, Liu CJ, Gu JP. Swine model of thrombotic caval occlusion created by autologous thrombus injection with assistance of intra-caval net knitting. Sci Rep. 2015;5:1–9.
Article
Google Scholar
Albadawi H, Witting AA, Pershad Y, Wallace A, Fleck AR, Hoang P, et al. Animal models of venous thrombosis. Cardiovasc Diagn Ther. 2017;7(Suppl 3):S197-206.
Article
Google Scholar
Lin PH, Chen C, Surowiec SM, Conklin B, Bush RL, Lumsden AB. Evaluation of thrombolysis in a porcine model of chronic deep venous thrombosis: an endovascular model. J Vasc Surg. 2001;33:621–7.
Article
CAS
Google Scholar
Rectenwald JE, Deatrick KB, Sukheepod P, Lynch EM, Moore AJ, Moaveni DM, et al. Experimental pulmonary embolism: effects of the thrombus and attenuation of pulmonary artery injury by low-molecular-weight heparin. J Vasc Surg. 2006;43:800–8.
Article
Google Scholar
Barbash IM, Schenke WH, Halabi M, Ratnayaka K, Faranesh AZ, Kocaturk O, et al. Experimental model of large pulmonary embolism employing controlled release of subacute caval thrombus in swine. J Vasc Interv Radiol. 2011;22:1471–7.
Article
Google Scholar
Frisbie JH. An animal model for venous thrombosis and spontaneous pulmonary embolism. Spinal Cord. 2005;43:635–9.
Article
CAS
Google Scholar
Robinson VJB, Pineda GE, Salah AK, Pipkin WL, Corley JH, Jonah MH, et al. Latex d-dimer signal in in situ femoral vein thrombus in swine and effect of minidose exogenous tissue plasminogen activator bolus. Chest. 2005;127:622–9.
Article
CAS
Google Scholar
Gromadziński L, Skowrońska A, Holak P, Smoliński M, Lepiarczyk E, Żurada A, et al. A new experimental porcine model of venous thromboembolism. J Clin Med. 2021;10:1862.
Article
Google Scholar
Andrews S. FastQC: A quality control tool for high throughput sequence data. Babraham Bioinformatics. 2010;:www.bioinformatics.babraham.ac.uk/projects/fastqc.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.
Article
Google Scholar
Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41:e74–e74.
Article
CAS
Google Scholar
Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, et al. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–6.
Article
CAS
Google Scholar
Wucher V, Legeai F, Hédan B, Rizk G, Lagoutte L, Leeb T, et al. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 2017;45:8.
Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. Flexible analysis of transcriptome assemblies with Ballgown. bioRxiv. 2014;003665.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Shen S, Park JW, Lu Z-X, Lin L, Henry MD, Wu YN, et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci. 2014;111:E5593–601.
Article
CAS
Google Scholar
Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1.
Article
CAS
Google Scholar
Veiga D. maser: Mapping Alternative Splicing Events to pRoteins. R package version 1.0.0,. 2018. https://github.com/DiogoVeiga/maser.
Garrido-Martín D, Palumbo E, Guigó R, Breschi A. ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization. PLoS Comput Biol. 2018;14: e1006360.
Article
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.org/10.1101/gr.107524.110.
Article
CAS
Google Scholar
Wang J, Pan Y, Shen S, Lin L, Xing Y. rMATS-DVR: rMATS discovery of differential variants in RNA. Bioinformatics. 2017;33:2216–7.
Article
CAS
Google Scholar
Wang X, Lu P, Luo Z. GMATo: A novel tool for the identification and analysis of microsatellites in large genomes. Bioinformation. 2013;9:541–4.
Article
Google Scholar
Kent WJ. BLAT —The BLAST -Like Alignment Tool. Genome Res. 2002;12:656–64.
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
Google Scholar
Knaus BJ, Grünwald NJ. vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 2017;17:44–53.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17:122.
Article
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.
Article
CAS
Google Scholar
Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al. g:Profiler—a web server for functional interpretation of gene lists. Nucleic Acids Res. 2016;44:W83–9.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.
Article
CAS
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115–e115.
Article
CAS
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:45e–45.
Article
Google Scholar
Zagorski J, Kline JA. Differential effect of mild and severe pulmonary embolism on the rat lung transcriptome. Respir Res. 2016;17:1–13.
Article
Google Scholar
Su Y, Li Q, Zheng Z, Wei X, Hou P. Identification of genes, pathways and transcription factor-miRNA-target gene networks and experimental verification in venous thromboembolism. Sci Rep. 2021;11:1–16.
Article
CAS
Google Scholar
Hounkpe BW, de Oliveira Benatti R, de Sá Carvalho B, de Paula EV. Identification of common and divergent gene expression signatures in patients with venous and arterial thrombosis using data from public repositories. PLoS One. 2020;15(8):e0235501.
Article
CAS
Google Scholar
Plenz GAM, Deng MC, Robenek H, Völker W. Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis. 2003;166:1–11.
Article
CAS
Google Scholar
Kuivaniemi H, Tromp G, Prockop DJ. Mutations in fibrillar collagens (types I, II, III, and XI), fibril- associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of disease of bone, cartilage, and blood vessels. Hum Mutat. 1997;9:300–15.
Article
CAS
Google Scholar
Vuust J, Sobel ME, Martin GR. Regulation of type I collagen synthesis. total pro alpha 1(I) and pro alpha 2(I) mRNAs are maintained in a 2:1 ratio under varying rates of collagen synthesis. Eur J Biochem. 1985;151:449–53.
Article
CAS
Google Scholar
Žaloudíková M, Eckhardt A, Vytášek R, Uhlík J, Novotný T, Bačáková L, et al. Decreased collagen VI in the tunica media of pulmonary vessels during exposure to hypoxia: a novel step in pulmonary arterial remodeling. Pulm Circ. 2019;9:1–10.
Article
Google Scholar
Luther DJ, Thodeti CK, Shamhart PE, Adapala RK, Hodnichak C, Weihrauch D, et al. Absence of type vi collagen paradoxically improves cardiac function, structure, and remodeling after myocardial infarction. Circ Res. 2012;110:851–6.
Article
CAS
Google Scholar
Lintner KE, Wu YL, Yang Y, Spencer CH, Hauptmann G, Hebert LA, et al. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases. Front Immunol. 2016;7:36.
Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehrkop C, Fromell K, et al. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev. 2016;274:245–69.
Article
CAS
Google Scholar
Carter AM. Complement activation: an emerging player in the pathogenesis of cardiovascular disease. Scientifica (Cairo). 2012;2012:1–14.
Article
Google Scholar
Matissek SJ, Elsawa SF. GLI3: a mediator of genetic diseases, development and cancer. Cell Commun Signal. 2020;18:54.
Article
CAS
Google Scholar
Golej DL, Askari B, Kramer F, Barnhart S, Vivekanandan-Giri A, Pennathur S, et al. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells. J Lipid Res. 2011;52:782–93.
Article
CAS
Google Scholar
Gibbins JM, Briddon S, Shutes A, Van Vugt MJ, Van De Winkel JGJ, Saito T, et al. The p85 Subunit of Phosphatidylinositol 3-Kinase Associates with the Fc Receptor γ-Chain and Linker for Activitor of T Cells (LAT) in Platelets Stimulated by Collagen and Convulxin *. J Biol Chem. 1998;273:34437–43.
Article
CAS
Google Scholar
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med. 2020;9:8.
Article
Google Scholar
Schwarz DS, Blower MD. The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73:79–94.
Article
CAS
Google Scholar
Lin JH, Walter P, Yen TSB. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.
Article
CAS
Google Scholar
Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab. 2021;47: 101169.
Article
CAS
Google Scholar
Sabirli R, Koseler A, Mansur N, Zeytunluoglu A, Sabirli GT, Turkcuer I, et al. Predictive value of endoplasmic reticulum stress markers in low ejection fractional heart failure. In Vivo (Brooklyn). 2019;33:1581–92.
Article
CAS
Google Scholar
Zhang Y, Cui C, Lai ZC. The defender against apoptotic cell death 1 gene is required for tissue growth and efficient N-glycosylation in Drosophila melanogaster. Dev Biol. 2016;420:186–95.
Article
CAS
Google Scholar
Yu B, Xu C, Tang X, Liu Z, Lin X, Meng H, et al. Endoplasmic reticulum stress-related secretory proteins as biomarkers of early myocardial ischemia-induced sudden cardiac deaths. Int J Legal Med. 2022;136:159–68.
Article
Google Scholar
Ortega A, Roselló-Lletí E, Tarazón E, Molina-Navarro MM, Martínez-Dolz L, González-Juanatey JR, et al. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS ONE. 2014;9: e107635.
Article
Google Scholar
Liu X, Zhang R, Huang L, Zheng Z, Vlassara H, Striker G, et al. Excessive oxidative stress contributes to increased acute ER stress kidney injury in aged mice. Oxid Med Cell Longev. 2019;2019:2746521.
Google Scholar
Zhu W, Li W, Silverstein RL. Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36. Blood. 2012;119:6136–44.
Article
CAS
Google Scholar
Wang Z, Zhang H, Cheng Q. PDIA4: the basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother. 2019;2020(122): 109688.
Google Scholar
Holbrook LM, Watkins NA, Simmonds AD, Jones CI, Ouwehand WH, Gibbins JM. Platelets release novel thiol isomerase enzymes which are recruited to the cell surface following activation. Br J Haematol. 2010;148:627–37.
Article
CAS
Google Scholar
Gidalevitz T, Stevens F, Argon Y. Orchestration of secretory protein folding by ER chaperones. Biochem Biophys Acta. 2013;1833:2410–24.
Article
CAS
Google Scholar
Yun Lee D, Arnott D, Brown EJ. Ubiquilin4 is an adaptor protein that recruits Ubiquilin1 to the autophagy machinery. EMBO Rep. 2013;14:373–81.
Article
Google Scholar
Huynh VT, Audrézet MP, Sayer JA, Ong AC, Lefevre S, Le Brun V, et al. Clinical spectrum, prognosis and estimated prevalence of DNAJB11-kidney disease. Kidney Int. 2020;98:476–87.
Article
CAS
Google Scholar
Kiouptsi K, Finger S, Garlapati VS, Knorr M, Brandt M, Walter U, et al. Hypoxia evokes increased PDI and PDIA6 expression in the infarcted myocardium of ex-germ-free and conventionally raised mice. Biol Open. 2019;8:1–7.
Google Scholar
Souza-Neto FV, Jiménez-González S, Delgado-Valero B, Jurado-López R, Genty M, Romero-Miranda A, et al. The interplay of mitochondrial oxidative stress and endoplasmic reticulum stress in cardiovascular fibrosis in obese rats. Antioxidants. 2021;10:1274.
Article
CAS
Google Scholar
Biwer LA, Good ME, Hong K, Patel RK, Agrawal N, Looft-Wilson R, et al. Non-endoplasmic reticulum-based calr (Calreticulin) can coordinate heterocellular calcium signaling and vascular function. Arterioscler Thromb Vasc Biol. 2018;38:120–30.
Article
CAS
Google Scholar
Nazha B, Garcia G, Kandov R, Odaimi M. Calreticulin Mutated Essential Thrombocythemia Presenting as Acute Coronary Syndrome. Case Rep Hematol. 2015;2015:161764.
Quiles JM, Pepin ME, Sunny S, Shelar SB, Challa AK, Dalley B, et al. Identification of Nrf2-responsive microRNA networks as putative mediators of myocardial reductive stress. Sci Rep. 2021;11:1–12.
Article
Google Scholar
Zhang Y, Zheng Q, Chen R, Dai X, Zhu Y, Ma L. Association of NFE2L2 Gene Polymorphisms with Risk and Clinical Characteristics of Acute Type A Aortic Dissection in Han Chinese Population. Oxid Med Cell Longev. 2021;2021:5173190.
Scott NA, Sharpe LJ, Brown AJ. BBA - Molecular and Cell Biology of Lipids The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. BBA - Molecular and Cell Biology of Lipids. 2021;1866: 158837.
Article
CAS
Google Scholar
Tan JME, van der Stoel MM, van den Berg M, van Loon NM, Moeton M, Scholl E, et al. The MARCH6-SQLE Axis Controls Endothelial Cholesterol Homeostasis and Angiogenic Sprouting. Cell Rep. 2020;32(5):107944.
Cooper DN, Tuddenham EGD. Molecular genetics of familial venous thrombosis. Br Med Bull. 1994;50:833–50.
Article
CAS
Google Scholar
Wang Q, Liu B, Wang Y, Bai B, Yu T, Chu X. The biomarkers of key miRNAs and target genes associated with acute myocardial infarction. PeerJ. 2020;8: e9129.
Article
Google Scholar
Azad AK, Chakrabarti S, Xu Z, Davidge ST, Fu YX. Coiled-coil domain containing 3 (CCDC3) represses tumor necrosis factor-α/nuclear factor κB-induced endothelial inflammation. Cell Signal. 2014;26:2793–800.
Article
CAS
Google Scholar
Kobayashi S, Fukuhara A, Taguchi T, Matsuda M, Tochino Y, Otsuki M, et al. Identification of a new secretory factor, CCDC3/Favine, in adipocytes and endothelial cells. Biochem Biophys Res Commun. 2010;392:29–35.
Article
CAS
Google Scholar
Lee W Sen, Jain MK, Arkonac BM, Zhang D, Shaw SY, Kashiki S, et al. Thy-1, a novel marker for angiogenesis upregulated by inflammatory cytokines. Circ Res. 1998;82:845–51.
Ishizu A, Ishikura H, Nakamaru Y, Takeuchi E, Kimura C, Koike T, et al. Thy-1 induced on rat endothelium regulates vascular permeability at sites of inflammation. Int Immunol. 1995;7:1939–47.
Article
CAS
Google Scholar
Mason JC, Yarwood H, Tárnok A, Sugars K, Harrison AA, Robinson PJ, et al. Human Thy-1 is cytokine-inducible on vascular endothelial cells and is a signaling molecule regulated by protein kinase C. J Immunol. 1996;157:874–83.
Article
CAS
Google Scholar
Urano F, Wang XZ, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 1979;2000(287):664–6.
Google Scholar
Nukala SB, Tura-Ceide O, Aldini G, Smolders VFED, Blanco I, Peinado VI, et al. Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension. Sci Rep. 2021;11:5583.