Reeve HK, Sherman PW. Adaptation and the goals of evolutionary research. Q R Biol. 1993;68:1–32.
Article
Google Scholar
Kim S, Cho YS, Kim HM, Chung O, Kim H, Jho S, et al. Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly. Genome Biol. 2016;17:1–12.
Article
CAS
Google Scholar
Li Y, Wu D-D, Boyko AR, Wang G-D, Wu S-F, Irwin DM, et al. Population variation revealed high-altitude adaptation of Tibetan mastiffs. Mol Biol Evol. 2014;31:1200–5.
Article
CAS
Google Scholar
Yu L, Wang GD, Ruan J, Chen YB, Yang CP, Cao X, et al. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat Genet. 2016;48:947–52.
Article
CAS
Google Scholar
Carroll SB. Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134:25–36.
Article
CAS
Google Scholar
Qi X, Zhang Q, He Y, Yang L, Zhang X, Shi P, et al. The transcriptomic landscape of Yaks reveals molecular pathways for high altitude adaptation. Genome Biol Evol. 2019;11:72–85.
CAS
Google Scholar
Carroll SB. Evolution at two levels: on genes and form. PLoS Biol. 2005;3:e245.
Article
Google Scholar
Fraser HB. Gene expression drives local adaptation in humans. Genome Res. 2013;23:1089–96.
Article
CAS
Google Scholar
Kalberer SR, Wisniewski M, Arora R. Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci. 2006;171:3–16.
Article
CAS
Google Scholar
Price SA, Hopkins SSB, Smith KK, Roth VL. Tempo of trophic evolution and its impact on mammalian diversification. Proc Natl Acad Sci U S A. 2012;109:7008–12.
Article
CAS
Google Scholar
de Sousa-Pereira P, Cova M, Abrantes J, Ferreira R, Trindade F, Barros A, et al. Cross-species comparison of mammalian saliva using an LC-MALDI based proteomic approach. Proteomics. 2015;15:1598–607.
Article
Google Scholar
Olsen AM. Feeding ecology is the primary driver of beak shape diversification in waterfowl. Funct Ecol. 2017;31:1985–95.
Article
Google Scholar
Stevens CE, Hume ID. Comparative Physiology of the Vertebrate Digestive System. New York: Cambridge University Press; 2004.
Google Scholar
Wang B-J, Xia J, Wang Q, Yu J-L, Song Z, Zhao H. Diet and adaptive evolution of alanine-glyoxylate aminotransferase mitochondrial targeting in birds. Mol Biol Evol. 2020;37:786–98.
Article
CAS
Google Scholar
Smalley KA, Rogers QR, Morris JG. Methionine requirement of kittens given amino acid diets containing adequate cystine. Br J Nutr. 1983;49:411–7.
Article
CAS
Google Scholar
Hu Y, Wu Q, Ma S, Ma T, Shan L, Wang X, et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proc Natl Acad Sci U S A. 2017;114:1081–6.
Article
CAS
Google Scholar
King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science. 1975;188:107–16.
Article
CAS
Google Scholar
Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 1979;2001(293):1068–70.
Google Scholar
Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol Lett. 2008;11:106–15.
Google Scholar
Ledón-Rettig CC, Richards CL, Martin LB. Epigenetics for behavioral ecologists. Behav Ecol. 2013;24:311–24.
Article
Google Scholar
Hernando-Herraez I, Prado-Martinez J, Garg P, Fernandez-Callejo M, Heyn H, Hvilsom C, et al. Dynamics of DNA methylation in recent human and great ape evolution. PLoS Genet. 2013;9: e1003763.
Article
CAS
Google Scholar
Jacobsen SC, Brøns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55:3341–9.
Article
CAS
Google Scholar
Chen R, Xia L, Tu K, Duan M, Kukurba K, Li-Pook-Than J, et al. Longitudinal personal DNA methylome dynamics in a human with a chronic condition. Nat Med. 2018;24:1930–9.
Article
CAS
Google Scholar
Okae H, Chiba H, Hiura H, Hamada H, Sato A, Utsunomiya T, et al. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet. 2014;10: e1004868.
Article
Google Scholar
Zhou M, Zhang L, Yang Q, Yan C, Jiang P, Lan Y, et al. Age-related gene expression and DNA methylation changes in rhesus macaque. Genomics. 2020;112:5147–56.
Article
CAS
Google Scholar
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.
Article
CAS
Google Scholar
Sasse SK, Mailloux CM, Barczak AJ, Wang Q, Altonsy MO, Jain MK, et al. The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry. Mol Cell Biol. 2013;33:2104–15.
Article
CAS
Google Scholar
Gittleman JL. Are the pandas successful specialists or evolutionary failures? Bioscience. 1994;44:456–64.
Article
Google Scholar
Song C, Liu D, Yang S, Cheng L, Xing E, Chen Z. Sericin enhances the insulin-PI3K/AKT signaling pathway in the liver of a type 2 diabetes rat model. Exp Ther Med. 2018;16:3345–52.
Google Scholar
DeBosch BJ, Chen Z, Saben JL, Finck BN, Moley KH. Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis. J Biol Chem. 2014;289:10989–98.
Article
CAS
Google Scholar
Berg JM, Tymoczko JL, Stryer L. Biochemistry: Chapter 18 Oxidative Phosphorylation. 5th edition. New York: W.H.Freeman; 2002.
Knott KK, Christian AL, Falcone JF, Vance CK, Bauer LL, Fahey GC Jr, et al. Phenological changes in bamboo carbohydrates explain the preference for culm over leaves by giant pandas (Ailuropoda melanoleuca) during spring. PLoS ONE. 2017;12: e0177582.
Article
Google Scholar
Zhang W, Liu W, Hou R, Zhang L, Schmitz-Esser S, Sun H, et al. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. ISME J. 2018;12:1319–28.
Article
CAS
Google Scholar
Higashino K, Fujioka M, Yamamura Y. The conversion of l-lysine to saccharopine and α-aminoadipate in mouse. Arch Biochem Biophys. 1971;142:606–14.
Article
CAS
Google Scholar
Sacksteder KA, Biery BJ, Morrell JC, Goodman BK, Geisbrecht BV, Cox RP, et al. Identification of the α-aminoadipic semialdehyde synthase which is defective in familial hyperlysinemia. Am J Hum Genet. 2000;66:1736–43.
Article
CAS
Google Scholar
Vaz FM, Wanders RJA. Carnitine biosynthesis in mammals. Biochemical Journal. 2002;361:417–29.
Article
CAS
Google Scholar
Tomé D, Bos C. Lysine requirement through the human life cycle. J Nutr. 2007;137:1642S-1645S.
Article
Google Scholar
Rushton DH. Nutritional factors and hair loss. Clin Exp Dermatol. 2002;27:396–404.
Article
CAS
Google Scholar
Ghosh S, Smriga M, Vuvor F, Suri D, Mohammed H, Armah SM, et al. Effect of lysine supplementation on health and morbidity in subjects belonging to poor peri-urban households in Accra, Ghana. Am J Clin Nutr. 2010;92:928–39.
Article
CAS
Google Scholar
Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab. 2010;7:1–14.
Article
Google Scholar
Cleveland BM, Kiess AS, Blemings KP. α-Aminoadipate δ-semialdehyde synthase mRNA knockdown reduces the lysine requirement of a mouse hepatic cell line. J Nutr. 2008;138:2143–7.
Article
CAS
Google Scholar
Duan LP, Wang HH, Wang DQH. Cholesterol absorption is mainly regulated by the jejunal and ileal ATP-binding cassette sterol efflux transporters Abcg5 and Abcg8 in mice. J Lipid Res. 2004;45:1312–23.
Article
CAS
Google Scholar
Yu L, Gupta S, Xu F, Liverman ADB, Moschetta A, Mangelsdorf DJ, et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem. 2005;280:8742–7.
Article
CAS
Google Scholar
Quazi F, Molday RS. Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J Biol Chem. 2013;288:34414–26.
Article
CAS
Google Scholar
Jf O, Am V. ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ Res. 2006;99:1031–43.
Article
Google Scholar
Baskin KK, Grueter CE, Kusminski CM, Holland WL, Bookout AL, Satapati S, et al. MED13-dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. EMBO Mol Med. 2014;6:1610.
Article
CAS
Google Scholar
Moraru A, Cakan-Akdogan G, Strassburger K, Males M, Mueller S, Jabs M, et al. THADA regulates the organismal balance between energy storage and heat production. Dev Cell. 2017;41:72.
Article
CAS
Google Scholar
Yang L, Liu Z, Ou K, Wang T, Li Z, Tian Y, et al. Evolution, dynamic expression changes and regulatory characteristics of gene families involved in the glycerophosphate pathway of triglyceride synthesis in chicken (Gallus gallus). Sci Rep. 2019;9:1–9.
Google Scholar
Chiang JYL. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol. 2004;40:539–51.
Article
CAS
Google Scholar
Lee WR, Ishikawa T, Umetani M. The interaction between metabolism, cancer and cardiovascular disease, connected by 27-hydroxycholesterol. Clinical Lipidol. 2014;9:617–24.
Article
CAS
Google Scholar
Yuan S, Qu Y, Zhang Z, Zhao J, Hou R, Wang H. Composition and nutrient analysis of captive giant panda diet. Acta Theriologica Sinica. 2015;35:65–73.
Google Scholar
Cavalieri V, Spinelli G. Environmental epigenetics in zebrafish. Epigenetics Chromatin. 2017;10:46.
Article
Google Scholar
Wang Z, Zhang J, Li H, Li J, Niimi M, Ding G, et al. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models. Sci Rep. 2016;6:26942.
Article
CAS
Google Scholar
Zhang YY, Fischer M, Colot V, Bossdorf O. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 2013;197:314–22.
Article
CAS
Google Scholar
Zhao Y, Tang J-W, Yang Z, Cao Y-B, Ren J-L, Ben AY, et al. Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax. Proc Natl Acad Sci. 2016;113:2146–51.
Article
CAS
Google Scholar
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172:650–65.
Article
CAS
Google Scholar
Mitsis T, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos GP, Eliopoulos E. Transcription factors and evolution: an integral part of gene expression (Review). World Academy of Sciences Journal. 2020;2:3–8.
Google Scholar
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 1979;2017(356):92–5.
Google Scholar
Dudchenko O, Shamim MS, Batra SS, Durand NC, Musial NT, Mostofa R, et al. The juicebox assembly tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv. 2018. https://doi.org/10.1101/254797.
Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. 2012;7: e30619.
Article
CAS
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
Article
CAS
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Article
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
Google Scholar
Smid M, Coebergh van den Braak RRJ, van de Werken HJG, van Riet J, van Galen A, de Weerd V, et al. Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons. BMC Bioinformatics. 2018;19:236.
Yu G. clusterProfiler: universal enrichment tool for functional and comparative study. bioRxiv. 2018. https://doi.org/10.1101/256784.
Ma J, Zhang L, Huang Y, Shen F, Wu H, Yang Z, et al. Epigenomic profiling indicates a role for DNA methylation in the postnatal liver and pancreas development of giant pandas. Genomics. 2022;114: 110342.
Article
CAS
Google Scholar