Wu D, Liu N, Ye Y. The zingiberaceous resources in china. Wuhan: Huazhong university of science and technology university press; 2016. p. 143.
Google Scholar
Branney TM. Hardy gingers: Including hedychium, roscoea, and zingiber. Portland: Timber press, Inc.; 2005. p. 44–55. 230, 241–242
Google Scholar
Gao J, Xia Y, Huang J, Li Q. Zhongguo jiangke huahui. Beijing: Science press; 2006. p. 40. 41, 43
Google Scholar
Sasidharan I, Nirmala MA. Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale roscoe). J Int Pharm Res. 2010;2: 40-43.
Banerjee S, Mullick H, Banerjee J, Ghosh A. Zingiber officinale: ‘A natural gold’. Int J Pharmaceutical Bio-Sci. 2011;2:283–94.
Google Scholar
Prasad S, Tyagi AK. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroent Res Pract. 2015;2015: 142979.
Kubra IR, Rao LJM. An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale roscoe). Crit Rev Food Sci Nutr. 2012;52:651–88.
Article
CAS
Google Scholar
Shareef HK, Muhammed HJ, Hussein HM, Hameed IH. Antibacterial effect of ginger (Zingiber officinale) roscoe and bioactive chemical analysis using gas chromatography mass spectrum. Orient J Chem. 2016;32:20–40.
Article
Google Scholar
Li H-L, Wu L, Dong Z, Jiang Y, Jiang S, Xing H, et al. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Hort Res. 2021;8: 1-1.
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? J Tradit Chinese Medical Sci. 2021;8:267–79.
CAS
Google Scholar
San Chang J, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145:146–51.
Article
Google Scholar
Thota SM, Balan V, Sivaramakrishnan V. Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. Phytother Res. 2020;34:3148–67.
Article
CAS
Google Scholar
Theilade I. Revision of the genus Zingiber in peninsular Malaysia. The Gardens’ Bulletin Singapore. 1996;48:207–36.
Google Scholar
Theilade I. A synopsis of the genus Zingiber (Zingiberaceae) in Thailand. Nord J Bot. 1999;19:389–410.
Article
Google Scholar
Theilade I, Mærsk-Møller M, Theilade J, Larsen K. Pollen morphology and structure of Zingiber (Zingiberaceae). Grana. 1993;32:338–42.
Article
Google Scholar
Theerakulpisut P, Triboun P, Mahakham W, Maensiri D, Khampila J, Chantaranothai P. Phylogeny of the genus Zingiber (Zingiberaceae) based on nuclear its sequence data. Kew Bull. 2012;67:389–95.
Article
Google Scholar
Kress WJ, Prince LM, Williams KJ. The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. Am J Bot. 2002;89:1682–96.
Article
CAS
Google Scholar
Ghosh S, Majumder P, Mandi SS. Species-specific AFLP markers for identification of Zingiber officinale, Z. montanum and Z. zerumbet (Zingiberaceae). Genet Mol Res. 2011;10:218–29.
Article
CAS
Google Scholar
Li D-M, Ye Y-J, Xu Y-C, Liu J-M, Zhu G-F. Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses. PLoS One. 2020;15:e0236590.
Article
CAS
Google Scholar
Guo Y-Y, Yang J-X, Bai M-Z, Zhang G-Q, Liu Z-J. The chloroplast genome evolution of venus slipper (Paphiopedilum): Ir expansion, ssc contraction, and highly rearranged ssc regions. BMC Plant Biol. 2021;21:1–14.
Article
Google Scholar
Wicke S, Schneeweiss GM, Depamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol Biol. 2011;76:273–97.
Article
CAS
Google Scholar
Daniell H, Lin C-S, Yu M, Chang W-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016;17:1–29.
Article
Google Scholar
Li X, Zuo Y, Zhu X, Liao S, Ma J. Complete chloroplast genomes and comparative analysis of sequences evolution among seven Aristolochia (Aristolochiaceae) medicinal species. Int J Mol Sci. 2019;20:1045.
Article
CAS
Google Scholar
Hong Z, Wu Z, Zhao K, Yang Z, Zhang N, Guo J, et al. Comparative analyses of five complete chloroplast genomes from the genus Pterocarpus (Fabacaeae). Int J Mol Sci. 2020;21:3758.
Article
CAS
Google Scholar
Li D-M, Li J, Wang D-R, Xu Y-C, Zhu G-F. Molecular evolution of chloroplast genomes in subfamily Zingiberoideae (Zingiberaceae). BMC Plant Biol. 2021;21:1–24.
Article
Google Scholar
Tsunewaki K, Ogihara Y. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. Ii. On the origin of polyploid wheat cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics. 1983;104:155–71.
Article
CAS
Google Scholar
Barrett CF, Wicke S, Sass C. Dense infraspecific sampling reveals rapid and independent trajectories of plastome degradation in a heterotrophic orchid complex. New Phytol. 2018;218:1192–204.
Article
CAS
Google Scholar
Barrett CF, Sinn BT, Kennedy AH. Unprecedented parallel photosynthetic losses in a heterotrophic orchid genus. Mol Biol Evol. 2019;36:1884–901.
Article
CAS
Google Scholar
Cui Y, Nie L, Sun W, Xu Z, Wang Y, Yu J, et al. Comparative and phylogenetic analyses of ginger (Zingiber officinale) in the family Zingiberaceae based on the complete chloroplast genome. Plants. 2019;8:283.
Article
CAS
Google Scholar
Li D-M, Zhao C-Y, Liu X-F. Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: Molecular structures and comparative analysis. Molecules. 2019;24:474.
Article
Google Scholar
Li D-M, Zhao C-Y, Zhu G-F, Xu Y-C. Complete chloroplast genome sequence of Hedychium coronarium. Mitochondrial DNA Part B. 2019;4:2806–7.
Article
Google Scholar
Mazumdar P, Binti Othman R, Mebus K, Ramakrishnan N, Ann HJ. Codon usage and codon pair patterns in non-grass monocot genomes. Ann Bot. 2017;120:893–909.
Article
CAS
Google Scholar
Timme RE, Kuehl JV, Boore JL, Jansen RK. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am J Bot. 2007;94:302–12.
Article
CAS
Google Scholar
Mehmood F, Shahzadi I, Ali Z, Islam M, Naeem M, Mirza B, et al. Correlations among oligonucleotide repeats, nucleotide substitutions, and insertion-deletion mutations in chloroplast genomes of plant family Malvaceae. J Syst Evol. 2021;59:388–402.
Article
Google Scholar
Mehmood F, Rahim A, Heidari P, Ahmed I, Poczai P. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecol Evol. 2021;11:7810–26.
Article
Google Scholar
Waseem S, Mirza B, Ahmed I, Waheed MT. Comparative analyses of chloroplast genomes of Theobroma cacao and Theobroma grandiflorum. Biologia. 2020;75:761–71.
Article
Google Scholar
Henriquez CL, Mehmood F, Hayat A, Sammad A, Waseem S, Waheed MT, et al. Chloroplast genome evolution in the Dracunculus clade (Aroideae, Araceae). Genomics. 2021;113:183–92.
Article
Google Scholar
Lee C, Ruhlman TA, Jansen RK. Unprecedented intraindividual structural heteroplasmy in Eleocharis (Cyperaceae, Poales) plastomes. Genome Biol Evol. 2020;12:641–55.
Article
Google Scholar
Li L, Hu Y, He M, Zhang B, Wu W, Cai P, et al. Comparative chloroplast genomes: Insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genomics. 2021;22:1–22.
Google Scholar
Peng J-Y, Zhang X-S, Zhang D-G, Wang Y, Deng T, Huang X-H, et al. Newly reported chloroplast genome of Sinosenecio albonervius y. Liu & qe yang and comparative analyses with other Sinosenecio species. BMC Genomics. 2022;23:1–13.
Article
Google Scholar
Wu Z, Liao R, Yang T, Dong X, Lan D, Qin R, et al. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae). BMC Genomics. 2020;21:1–14.
Article
Google Scholar
Wu C-S, Chaw S-M. Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (Cupressophytes). Genome Biol Evol. 2016;8:3740–50.
CAS
Google Scholar
Zhu A, Guo W, Gupta S, Fan W, Mower JP. Evolutionary dynamics of the plastid inverted repeat: The effects of expansion, contraction, and loss on substitution rates. New Phytol. 2016;209:1747–56.
Article
CAS
Google Scholar
Li J, Tang J, Zeng S, Han F, Yuan J, Yu J. Comparative plastid genomics of four Pilea (Urticaceae) species: Insight into interspecific plastid genome diversity in Pilea. BMC Plant Biol. 2021;21:1–13.
Google Scholar
Blazier JC, Jansen RK, Mower JP, Govindu M, Zhang J, Weng M-L, et al. Variable presence of the inverted repeat and plastome stability in Erodium. Ann Bot. 2016;117:1209–20.
Article
CAS
Google Scholar
Weng ML, Ruhlman TA, Jansen RK. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. New Phytol. 2017;214:842–51.
Article
CAS
Google Scholar
Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, et al. Ycf1, the most promising plastid DNA barcode of land plants. Sci Rep. 2015;5:1–5.
CAS
Google Scholar
Zhao M-L, Song Y, Ni J, Yao X, Tan Y-H, Xu Z-F. Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci Rep. 2018;8:1–11.
Google Scholar
Bhandari GS, Park C-W. Molecular evidence for natural hybridization between Rumex crispus and R. obtusifolius (Polygonaceae) in Korea. Sci Rep. 2022;12:1–12.
Article
Google Scholar
Sun L, Jiang Z, Wan X, Zou X, Yao X, Wang Y, et al. The complete chloroplast genome of Magnolia polytepala: Comparative analyses offer implication for genetics and phylogeny of Yulania. Gene. 2020;736:144410.
Article
CAS
Google Scholar
Amenu SG, Wei N, Wu L, Oyebanji O, Hu G, Zhou Y, et al. Phylogenomic and comparative analyses of Coffeeae alliance (Rubiaceae): Deep insights into phylogenetic relationships and plastome evolution. BMC Plant Biol. 2022;22:1–13.
Article
Google Scholar
Jo S, Kim Y-K, Cheon S-H, Fan Q, Kim K-J. Characterization of 20 complete plastomes from the tribe Laureae (Lauraceae) and distribution of small inversions. PLoS One. 2019;14:e0224622.
Article
CAS
Google Scholar
Moseley RC, Mewalal R, Motta F, Tuskan GA, Haase S, Yang X. Conservation and diversification of circadian rhythmicity between a model crassulacean acid metabolism plant Kalanchoë edtschenkoi and a model c3 photosynthesis plant Arabidopsis thaliana. Front Plant Sci. 2018;9:1757.
Article
Google Scholar
Cvijović I, Good BH, Desai MM. The effect of strong purifying selection on genetic diversity. Genetics. 2018;209:1235–78.
Article
Google Scholar
Lee K, Leister D, Kleine T. Arabidopsis mitochondrial transcription termination factor mterf2 promotes splicing of group iib introns. Cells. 2021;10:315.
Article
CAS
Google Scholar
Dong W-L, Wang R-N, Zhang N-Y, Fan W-B, Fang M-F, Li Z-H. Molecular evolution of chloroplast genomes of orchid species: Insights into phylogenetic relationship and adaptive evolution. Int J Mol Sci. 2018;19:716.
Article
Google Scholar
de Santana LA, Gomes Pacheco T, Nascimento da Silva O, do Nascimento Vieira L, Guerra MP, Pacca Luna Mattar E, et al. Plastid genome evolution in Amazonian acaí palm (Euterpe oleracea mart.) and Atlantic forest açaí palm (Euterpe edulis mart.). Plant Mol Biol. 2021;105:559–74.
Article
Google Scholar
Ngamriabsakul C, Newman M, Cronk Q. The phylogeny of tribe Zingibereae (Zingiberaceae) based on its (nrDNA) and trnL-F (cpdna) sequences. Edinb J Bot. 2003;60:483–507.
Article
Google Scholar
Wood T, Whitten W, Williams N. Phylogeny of Hedychium and Related genera (Zingiberaceae) based on its sequence data. Edinb J Bot. 2000;57:261–70.
Article
Google Scholar
Williams KJ, Kress WJ, Manos PS. The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): Appendages do matter. Am J Bot. 2004;91:100–14.
Article
Google Scholar
Valeton T. New notes on the Zingiberaceae of Java and Malaya n archipelago. Bull Jard Bot Buitenzorg ser. 1918;27:1–166.
Google Scholar
Watson LE, Siniscalchi CM, Mandel J. Phylogenomics of the hyperdiverse daisy tribes: Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae. J Syst Evol. 2020;58:841–52.
Article
Google Scholar
Vargas OM, Ortiz EM, Simpson BB. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytol. 2017;214:1736–50.
Article
CAS
Google Scholar
Gao B, Yuan L, Tang T, Hou J, Pan K, Wei N. The complete chloroplast genome sequence of Alpinia oxyphylla miq. and comparison analysis within the Zingiberaceae family. PLoS One. 2019;14:e0218817.
Article
CAS
Google Scholar
Gui L, Jiang S, Xie D, Yu L, Huang Y, Zhang Z, et al. Analysis of complete chloroplast genomes of Curcuma and the contribution to phylogeny and adaptive evolution. Gene. 2020;732:144355.
Article
CAS
Google Scholar
Liang H, Zhang Y, Deng J, Gao G, Ding C, Zhang L, et al. The complete chloroplast genome sequences of 14 Curcuma species: Insights into genome evolution and phylogenetic relationships within Zingiberales. Front Genet. 2020;11:802.
Article
CAS
Google Scholar
Li D-M, Zhu G-F, Xu Y-C, Ye Y-J, Liu J-M. Complete chloroplast genomes of three medicinal Alpinia species: Genome organization, comparative analyses and phylogenetic relationships in family Zingiberaceae. Plants. 2020;9:286.
Article
CAS
Google Scholar
Li D-M, Zhao C-Y, Zhu G-F, Xu Y-C. Complete chloroplast genome sequence of Amomum villosum. Mitochondrial DNA Part B. 2019;4:2673–4.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
Google Scholar
Jin J-J, Yu W-B, Yang J-B, Song Y, DePamphilis CW, Yi T-S, et al. Getorganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21:1–31.
Article
Google Scholar
Srivastava D, Shanker A. Identification of simple sequence repeats in chloroplast genomes of Magnoliids through bioinformatics approach. Interdiscip Sci. 2016;8:327–36.
Article
Google Scholar
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. Vista: Computational tools for comparative genomics. Nucleic Acids Res. 2004;32:W273–W79.
Article
CAS
Google Scholar
Katoh K, Misawa K, Ki K, Miyata T. Mafft: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Article
CAS
Google Scholar
Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
CAS
Google Scholar
Librado P, Rozas J. Dnasp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.
Article
CAS
Google Scholar
Gao F, Chen C, Arab DA, Du Z, He Y, Ho SY. Easycodeml: A visual tool for analysis of selection using codeml. Ecol Evol. 2019;9:3891–8.
Article
Google Scholar
Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002;19:908–17.
Article
CAS
Google Scholar
Yang Z, Wong WS, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22:1107–18.
Article
CAS
Google Scholar
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Article
Google Scholar