Petschenka G, Agrawal AA. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr Opin Insect Sci. 2016;14:17–24.
Article
Google Scholar
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? Plant J. 2018;93(4):703–28.
Article
CAS
Google Scholar
Erb M, Reymond P. Molecular interactions between plants and insect herbivores. Annu Rev Plant Biol. 2019;70:527–57.
Article
CAS
Google Scholar
Wari D, Aboshi T, Shinya T, Galis I. Integrated view of plant metabolic defense with particular focus on chewing herbivores. J Integr Plant Biol. 2022;64(2):449–75.
Google Scholar
Keeling CI, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006;170(4):657–75.
Article
CAS
Google Scholar
Zulak KG, Bohlmann J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol. 2010;52(1):86–97.
Article
CAS
Google Scholar
Ashour M, Wink M, Gershenzon J. Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. Annu Rev Plant Biol. 2018;40:258–303.
Article
Google Scholar
Whitehill J, Bohlmann J. A molecular and genomic reference system for conifer defence against insects. Plant Cell Environ. 2019;42(10):2844–59.
Article
CAS
Google Scholar
Whitehill J, Yuen M, Henderson H, Madilao L, Kshatriya K, Bryan J, et al. Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytol. 2019;221(3):1503–17.
Article
CAS
Google Scholar
Boncan D, Tsang S, Li C, Lee I, Lam HM, Chan TF, et al. Terpenes and terpenoids in plants: Interactions with environment and insects. Int J Mol Sci. 2020;21(19):7382.
Article
CAS
Google Scholar
Poudel DK, Rokaya A, Ojha PK, Timsina S, Satyal R, Dosoky NS. The chemical profiling of essential oils from different tissues of Cinnamomum camphora L. and their antimicrobial activities. Molecules. 2021;26(17):5132.
Article
CAS
Google Scholar
Jiang H, Wang J, Song L, Cao X, Yao X, Tang F. GCxGC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules. 2016;21(4):423.
Article
Google Scholar
Fouad HA, Tavares WDS, Zanuncio JC. Toxicity and repellent activity of monoterpene enantiomers to rice weevils (Sitophilus oryzae). Pest Manag Sci. 2021;77(7):3500–7.
Article
Google Scholar
Govind G, Mittapalli O, Griebel T, Allmann S, Böcker S, Baldwin IT. Unbiased transcriptional comparisons of generalist and specialist herbivores feeding on progressively defenseless Nicotiana attenuata plants. PLoS One. 2010;5(1):e8735.
Article
Google Scholar
Bras A, Roy A, Heckel DG, Anderson P, Karlsson GK. Pesticide resistance in arthropods: ecology matters too. Ecol Lett. 2022;25:1746–59.
Article
Google Scholar
Seybold SJ, Huber DPW, Lee SJ, Graves AD, Bohlmann J. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochem Rev. 2006;5:143–78.
Article
CAS
Google Scholar
Verónica T, Gabriel O, Soto-Robles LV, Arnulfo A, María FL, Gerardo Z. Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput Struct Biotec. 2022;20:3080–95.
Article
Google Scholar
Blomquist GJ, Tittiger C, MacLean M, Keeling CI. Cytochromes P450: terpene detoxification and pheromone production in bark beetles. Curr Opin Insect Sci. 2021;43:97–102.
Article
Google Scholar
Vandenhole M, Dermauw W, Van Leeuwen T. Short term transcriptional responses of P450s to phytochemicals in insects and mites. Curr Opin Insect Sci. 2021;43:117–27.
Article
Google Scholar
Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of insecticide resistance. Curr Opin Insect Sci. 2018;27:68–74.
Article
Google Scholar
Koganemaru R, Miller DM, Adelman ZN. Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pestic Biochem Phys. 2013;106:190–7.
Article
CAS
Google Scholar
Fang F, Wang W, Zhang D, Yuan L, Zhou D, Ma L, et al. The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens. Parasitol Res. 2015;114:4421–9.
Article
Google Scholar
Yahouedo GA, Chandre F, Rossignol M, Ginibre C, Balaban MN, et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci Rep. 2017;7(1):11091.
Article
Google Scholar
Chen C, Zhang CC, Li SY, Zhu H, Fan BQ, Su P, et al. Biological traits and life history of Pagiophloeus tsushimanus (Coleoptera: Curculionidae), a weevil pest on camphor trees in China. J For Res. 2021;32(5):1979–88.
Article
Google Scholar
Li SY, Chen C, Jia ZY, Li Q, Tang ZZ, Zhong MF, et al. Offspring performance and female preference of Pagiophloeus tsushimanus (coleoptera curculionidae) on three Lauraceae tree species: a potential risk of host shift caused by larval experience. J Appl Entomol. 2021;145(6):530–42.
Article
Google Scholar
Li SY, Wang JT, Chen C, Li H, Hao DJ. Tolerance, biochemistry and related gene expression in Pagiophloeus tsushimanus (Coleoptera: Curculionidae) exposed to chemical stress from headspace host-plant volatiles. Agric For Entomol. 2022;22(2):189–203.
Article
CAS
Google Scholar
Eljazi JS, Bachrouch O, Salem N, Msaada K, Aouini J, Hammami M, et al. Chemical composition and insecticidal activity of essential oil from coriander fruit against Tribolium castaenum, Sitophilus oryzae, and Lasioderma serricorne. Int J Food Prop. 2017;20:S2833–45.
Article
Google Scholar
Liu TT, Chao LK, Hong KS, Huang YJ, Yang TS. Composition and insecticidal activity of essential oil of Bacopa caroliniana and interactive effects of individual compounds on the activity. Insects. 2019;11(1):23.
Article
CAS
Google Scholar
Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Gene. 2019;20(11):631–56.
Article
CAS
Google Scholar
Vogel H, Musser RO, Celorio-Mancer MDLP. Transcripome responses in herbivorous insects towards host plant and toxin feeding. Annu Rev Plant Biol. 2014;47:197–233.
Article
CAS
Google Scholar
Rand E, Smit S, Beukes M, Apostolides Z, Pirk C, Nicolson SW. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci Rep. 2015;5:11779.
Article
Google Scholar
Roy A, Walker WB III, Vogel H, Chattington S, Larsson MC, Anderson P, et al. Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochem Mol Biol. 2016;71:91–105.
Article
CAS
Google Scholar
Huang Y, Liao M, Yang QQ, Xiao JJ, Hu ZY, Zhou LJ. Transcriptome profiling reveals differential gene expression of detoxfication enzymes in Sitophilus zeamais responding to terpinen-4-olfumigation. Pestic Biochem Phys. 2018;149:44–53.
Article
CAS
Google Scholar
Zheng X, Liu FD, Shi M, Li S, Xie XF, Li GN, et al. Transcriptome analysis of the reproduction of silkworm (Bombyx mori) under dimethoate stress. Pestic Biochem Phys. 2022;183:105081.
Article
CAS
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinf. 2015;13(5):278–89.
Article
Google Scholar
Jia D, Wang Y, Liu Y, Hu J, Guo Y, Gao L. SMRT sequencing of full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt). Sci Rep. 2018;8(1):2197.
Article
Google Scholar
Yang H, Xu D, Zhuo Z, Hu J, Lu B. SMRT sequencing of the full-length transcriptome of the Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PeerJ. 2020;8:e9133.
Article
Google Scholar
Wang X, Xu X, Ullah F, Qian D, Gao XW, Desneux N, et al. Comparison of full-length transcriptomes of different imidacloprid-resistant strains of Rhopalosiphum padi (L.). Entomol Gen. 2021;41:289–304.
Article
Google Scholar
Xu D, Yang H, Zhuo Z, Lu B, Hu J, Yang F. Characterization and analysis of the transcriptome in Opisina arenosella from different developmental stages using single-molecule real-time transcript sequencing and RNA-seq. Int J Biol Macromol. 2021;169:216–27.
Article
CAS
Google Scholar
Chen H, Lin L, Xie M, Zhong Y, Zhang G, Su W. Survey of the Bradysia odoriphaga transcriptome using PacBio single-molecule long-read sequencing. Genes. 2019;10(6):481.
Article
CAS
Google Scholar
Chen T, Sun Q, Ma Y, Zeng W, Liu R, Qu D, et al. A transcriptome atlas of silkworm silk glands revealed by PacBio single-molecule long-read sequencing. Mol Gen Genomics. 2020;295(5):1227–37.
Article
CAS
Google Scholar
Vuong CK, Black DL, Zheng S. The neurogenetics of alternative splicing. Nat Rev Neurosci. 2016;17(5):265–81.
Article
CAS
Google Scholar
Buschiazzo E, Gemmell NJ. The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays. 2006;28(10):1040–50.
Article
CAS
Google Scholar
Ouyang H, Wang X, Zheng X, Lu W, Qin F, Chen C. Full-length SMRT transcriptome sequencing and SSR analysis of Bactrocera dorsalis (Hendel). Insects. 2021;12(10):938.
Article
Google Scholar
Yuan Y, Zhang L, Wu G, Zhu J. High-throughput discovery microsatellites in Tomicus yunnanensis (Coleoptera: Scolytinae). J Environ Entomol. 2014;36:166–70 (In Chinese).
Google Scholar
Han X, Wang Y, Lu C, Lin H, Shi Y, He H, et al. Characteristics of the SSR loci in the Anoplophora chinensis transcriptome. Chi J Appl Entomol. 2019;56:1799–805 (in Chinese).
Google Scholar
Keeling CI, Campbell EO, Batista PD, Shegelski VA, Trevoy SA, Huber DP, et al. Chromosome-level genome assembly reveals genomic architecture of northern range expansion in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Mol Ecol Resour. 2022;22:1149–67.
Article
CAS
Google Scholar
Liu ZD, Xing LS, Huang WL, Liu B, Wan FH, Raffa KF, et al. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle. BMC Biol. 2022;20:190.
Article
CAS
Google Scholar
Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14:R27.
Article
Google Scholar
Nauen R, Bass C, Feyereisen R, Vontas J. The role of cytochrome P450s in insect toxicology and resistance. Annu Rev Plant Biol. 2022;67:105–24.
Google Scholar
Lu K, Song Y, Zeng R. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Curr Opin Insect Sci. 2021;43:103–7.
Article
Google Scholar
Keeling CI, Henderson H, Li M, Dullat HK, Ohnishi T, Bohlmann J. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles. Insect Biochem Mol Biol. 2013;43(12):1142–51.
Article
CAS
Google Scholar
Chiu CC, Keeling CI, Bohlmann J. Monoterpenyl esters in juvenile mountain pine beetle and sex-specific release of the aggregation pheromone trans-verbenol. Proc Natl Acad Sci U S A. 2018;115(14):3652–7.
Article
CAS
Google Scholar
Ramakrishnan R, Roy A, Kai M, Svatoš A, Jirošová A. Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive forest pest Ips typographus. Insect Biochem Molec. 2022;140:103680.
Article
CAS
Google Scholar
Li SY, Li H, Wang JT, Chen C, Hao DJ. Hormetic response and co-expression of cytochrome P450 and cuticular protein reveal the tolerance to host-specific terpenoid defences in an emerging insect pest, Pagiophloeus tsushimanus (Coleoptera: Curculionidae). J Pest Sci. 2022. https://doi.org/10.1007/s10340-022-01509-0.
Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol. 2007;25(11):1307–13.
Article
CAS
Google Scholar
Wang RL, Xia QQ, Baerson SR, Ren Y, Wang J, Su YJ, et al. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification. J Insect Physiol. 2015;75:54–62.
Article
CAS
Google Scholar
Nauen R, Zimmer CT, Vontas J. Heterologous expression of insect P450 enzymes that metabolize xenobiotics. Curr Opin Insect Sci. 2021;43:78–84.
Article
Google Scholar
Hrycay EG, Bandiera SM. In: Hrycay EG, Bandiera SM, editors. Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. Cham: Springer International Publishing; 2015. p. 1–61.
Chapter
Google Scholar
Tajiri R. Cuticle itself as a central and dynamic player in shaping cuticle. Curr Opin Insect Sci. 2017;19:30–5.
Article
Google Scholar
Birnbaum S, Abbot P. Gene expression and diet breadth in plant-feeding insects: summarizing trends. Trends Ecol Evol. 2020;35(3):259–77.
Article
Google Scholar
Charles JP. The regulation of expression of insect cuticle protein genes. Insect Biochem Mol Biol. 2010;40(3):205–13.
Article
CAS
Google Scholar
Sureshan SC, Mohideen HS. Ramya M differential expression profiling of Oxycarenus laetus Kirby (Hemiptera: Lygaeidae) upon exposure to gossypol. Mol Biol Rep. 2022;49:4727–35.
Article
CAS
Google Scholar
Chiu CC, Bohlmann J. Mountain pine beetle epidemic: an interplay of terpenoids in host defense and insect pheromones. Annu Rev Plant Biol. 2022;73:475–94.
Article
Google Scholar
Bearfield JC, Henry AG, Tittiger C, Blomquist GJ, Ginzel MD. Two regulatory mechanisms of monoterpenoid pheromone production in Ips spp. of bark beetles. J Chem Ecol. 2009;35:689–97.
Article
CAS
Google Scholar
Celorio-Mancera MP, Ahn S, Vogel H, Heckel DG. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera. BMC Genomics. 2011;12:575.
Article
CAS
Google Scholar
Lu K, Li YM, Cheng YB, Li WR, Zeng BX, Gu CZ, et al. Activation of the ROS/CncC and 20-Hydroxyecdysone signaling pathways is associated with xanthotoxin-induced tolerance to λ-Cyhalothrin in Spodoptera litura. J Agric Food Chem. 2021;69:13425–35.
Article
CAS
Google Scholar
Cen YJ, Zou XP, Li LB, Chen SN, Lin YG, Liu L, et al. Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. Pestic Biochem Phys. 2020;168:104630.
Article
Google Scholar
Corona M, Robinson GE. Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol Biol. 2006;15:687–701.
Article
CAS
Google Scholar
King AM, MacRae TH. Insect heat shock proteins during stress and diapause. Annu Rev Entomol. 2015;60:59–75.
Article
CAS
Google Scholar
Scriber MJ, Feeny P. Growth of herbivorous caterpillars in relation to feeding specialization and to the growth form of their food plants. Ecology. 1979;60:829–50.
Article
Google Scholar
Rothwell EM, Holeski LM. Phytochemical defences and performance of specialist and generalist herbivores: a meta-analysis. Ecol Entomol. 2020;45(3):396–405.
Article
Google Scholar
Ali JG, Agrawal AA. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 2012;17(5):293–302.
Article
CAS
Google Scholar
Beran F, Petschenka G. Sequestration of plant defense compounds by insects: from mechanisms to insect-plant coevolution. Annu Rev Entomol. 2022;67:163–80.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
Google Scholar