Enns GM: The contribution of mitochondria to common disorders. Mol. Genet. Metab. 2003, 80: 11-26. 10.1016/j.ymgme.2003.08.009.
Article
CAS
PubMed
Google Scholar
Schapira AHV: Mitochondrial disease. Lancet. 2006, 368: 70-82. 10.1016/S0140-6736(06)68970-8.
Article
CAS
PubMed
Google Scholar
Caron F, Jacq C, Rouvière-Yaniv J: Characterization of a histone-like protein extracted from yeast mitochondria. Proc. Natl. Acad. Sci. USA. 1979, 76: 4265-4269. 10.1073/pnas.76.9.4265.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dawid IB: 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science. 1974, 184: 80-81. 10.1126/science.184.4132.80.
Article
CAS
PubMed
Google Scholar
Groot GS, Kroon AM: Mitochondrial DNA from various organisms does not contain internally methylated cytosine in -CCGG- sequences. Biochim. Biophys. Acta. 1979, 564: 355-357.
Article
CAS
PubMed
Google Scholar
Chen T, Li E: Structure and function of eukaryotic DNA methyltransferases. Curr. Top. Dev. Biol. 2004, 60: 55-89. full_text.
Article
CAS
PubMed
Google Scholar
Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 2006, 31: 89-97. 10.1016/j.tibs.2005.12.008.
Article
CAS
PubMed
Google Scholar
Shiota K: DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res. 2004, 105: 325-334. 10.1159/000078205.
Article
CAS
PubMed
Google Scholar
Lieb JD, Beck S, Bulyk ML, Farnham P, Hattori N, Henikoff S, Liu XS, Okumura K, Shiota K, Ushijima T, Greally JM: Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenet Genome Res. 2006, 114: 1-15. 10.1159/000091922.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Gräf S, Tomazou EM, Bäckdahl L, Johnson N, Herberth M, Howe KL, Jackson DK, Miretti MM, Fiegler H, Marioni JC, Birney E, Hubbard TJP, Carter NP, Tavaré S, Beck S: An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 2008, 18: 1518-1529. 10.1101/gr.077479.108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yagi S, Hirabayashi K, Sato S, Li W, Takahashi Y, Hirakawa T, Wu G, Hattori N, Hattori N, Ohgane J, Tanaka S, Liu XS, Shiota K: DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) in mouse promoter regions demonstrating tissue-specific gene expression. Genome Res. 2008, 18: 1969-1978. 10.1101/gr.074070.107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hattori N, Nishino K, Ko Y, Hattori N, Ohgane J, Tanaka S, Shiota K: Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 2004, 279: 17063-17069. 10.1074/jbc.M309002200.
Article
CAS
PubMed
Google Scholar
Hattori N, Imao Y, Nishino K, Hattori N, Ohgane J, Yagi S, Tanaka S, Shiota K: Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells. 2007, 12: 387-396. 10.1111/j.1365-2443.2007.01058.x.
Article
CAS
PubMed
Google Scholar
Shiota K, Kogo Y, Ohgane J, Imamura T, Urano A, Nishino K, Tanaka S, Hattori N: Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells. 2002, 7: 961-969. 10.1046/j.1365-2443.2002.00574.x.
Article
CAS
PubMed
Google Scholar
Sato S, Yagi S, Arai Y, Hirabayashi K, Hattori N, Iwatani M, Okita K, Ohgane J, Tanaka S, Wakayama T, Yamanaka S, Shiota K: Genome-wide DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) residing in mouse pluripotent stem cells. Genes Cells. 2010, 15: 607-618. 10.1111/j.1365-2443.2010.01404.x.
Article
CAS
PubMed
Google Scholar
Rodić N, Oka M, Hamazaki T, Murawski MR, Jorgensen M, Maatouk DM, Resnick JL, Li E, Terada N: DNA methylation is required for silencing of ant4, an adenine nucleotide translocase selectively expressed in mouse embryonic stem cells and germ cells. Stem Cells. 2005, 23: 1314-1323. 10.1634/stemcells.2005-0119.
Article
PubMed
Google Scholar
Suzuki M, Sato S, Arai Y, Shinohara T, Tanaka S, Greally JM, Hattori N, Shiota K: A new class of tissue-specifically methylated regions involving entire CpG islands in the mouse. Genes Cells. 2007, 12: 1305-1314. 10.1111/j.1365-2443.2007.01136.x.
Article
CAS
PubMed
Google Scholar
Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M, Liu XS: Model-based analysis of tiling-arrays for ChIP-chip. Proc. Natl. Acad. Sci. USA. 2006, 103: 12457-12462. 10.1073/pnas.0601180103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Elstner M, Andreoli C, Ahting U, Tetko I, Klopstock T, Meitinger T, Prokisch H: MitoP2: an integrative tool for the analysis of the mitochondrial proteome. Mol. Biotechnol. 2008, 40: 306-315. 10.1007/s12033-008-9100-5.
Article
CAS
PubMed
Google Scholar
Raijman L: Citrulline synthesis in rat tissues and liver content of carbamoyl phosphate and ornithine. Biochem. J. 1974, 138: 225-232.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cooper MP, Qu L, Rohas LM, Lin J, Yang W, Erdjument-Bromage H, Tempst P, Spiegelman BM: Defects in energy homeostasis in Leigh syndrome French Canadian variant through PGC-1alpha/LRP130 complex. Genes Dev. 2006, 20: 2996-3009. 10.1101/gad.1483906.
Article
CAS
PubMed Central
PubMed
Google Scholar
Petruzzella V, Vergari R, Puzziferri I, Boffoli D, Lamantea E, Zeviani M, Papa S: A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome. Hum. Mol. Genet. 2001, 10: 529-535. 10.1093/hmg/10.5.529.
Article
CAS
PubMed
Google Scholar
Procaccio V, Wallace DC: Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations. Neurology. 2004, 62: 1899-1901.
Article
PubMed Central
PubMed
Google Scholar
Yamashita Y, Kumabe T, Cho YY, Watanabe M, Kawagishi J, Yoshimoto T, Fujino T, Kang MJ, Yamamoto TT: Fatty acid induced glioma cell growth is mediated by the acyl-CoA synthetase 5 gene located on chromosome 10q25.1-q25.2, a region frequently deleted in malignant gliomas. Oncogene. 2000, 19: 5919-5925. 10.1038/sj.onc.1203981.
Article
CAS
PubMed
Google Scholar
Zainelli GM, Dudek NL, Ross CA, Kim S, Muma NA: Mutant huntingtin protein: a substrate for transglutaminase 1, 2, and 3. J. Neuropathol. Exp. Neurol. 2005, 64: 58-65.
CAS
PubMed
Google Scholar
Imai S, Kikuchi R, Kusuhara H, Yagi S, Shiota K, Sugiyama Y: Analysis of DNA methylation and histone modification profiles of liver-specific transporters. Mol. Pharmacol. 2009, 75: 568-576. 10.1124/mol.108.052589.
Article
CAS
PubMed
Google Scholar
Kikuchi R, Yagi S, Kusuhara H, Imai S, Sugiyama Y, Shiota K: Genome-wide analysis of epigenetic signatures for kidney-specific transporters. Kidney Int.
Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M: Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004, 432: 1027-1032. 10.1038/nature03047.
Article
CAS
PubMed
Google Scholar
Wolfrum C, Stoffel M: Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 2006, 3: 99-110. 10.1016/j.cmet.2006.01.001.
Article
CAS
PubMed
Google Scholar
Wederell ED, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, Zhao Y, Zeng T, Bernier B, Ingham M, Hirst M, Robertson G, Marra MA, Jones S, Hoodless PA: Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res. 2008, 36: 4549-4564. 10.1093/nar/gkn382.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP, Wasserman WW: oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res. 2005, 33: 3154-3164. 10.1093/nar/gki624.
Article
PubMed Central
PubMed
Google Scholar
Miura H, Tomaru Y, Nakanishi M, Kondo S, Hayashizaki Y, Suzuki M: Identification of DNA regions and a set of transcriptional regulatory factors involved in transcriptional regulation of several human liver-enriched transcription factor genes. Nucleic Acids Res. 2009, 37: 778-792. 10.1093/nar/gkn978.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ménard C, Hein P, Paquin A, Savelson A, Yang XM, Lederfein D, Barnabé-Heider F, Mir AA, Sterneck E, Peterson AC, Johnson PF, Vinson C, Miller FD: An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron. 2002, 36: 597-610. 10.1016/S0896-6273(02)01026-7.
Article
PubMed
Google Scholar
Wang J, Schreiber RD, Campbell IL: STAT1 deficiency unexpectedly and markedly exacerbates the pathophysiological actions of IFN-alpha in the central nervous system. Proc. Natl. Acad. Sci. USA. 2002, 99: 16209-16214. 10.1073/pnas.252454799.
Article
CAS
PubMed Central
PubMed
Google Scholar
Carmona MC, Iglesias R, Obregón M, Darlington GJ, Villarroya F, Giralt M: Mitochondrial biogenesis and thyroid status maturation in brown fat require CCAAT/enhancer-binding protein alpha. J. Biol. Chem. 2002, 277: 21489-21498. 10.1074/jbc.M201710200.
Article
CAS
PubMed
Google Scholar
Jang J, Lee C: Mitochondrial adenine nucleotide translocator 3 is regulated by IL-4 and IFN-gamma via STAT-dependent pathways. Cell. Immunol. 2003, 226: 11-19. 10.1016/j.cellimm.2003.11.004.
Article
CAS
PubMed
Google Scholar
Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES, Mann M: Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003, 115: 629-640. 10.1016/S0092-8674(03)00926-7.
Article
CAS
PubMed
Google Scholar
Hochreiter S, Clevert D, Obermayer K: A new summarization method for Affymetrix probe level data. Bioinformatics. 2006, 22: 943-949. 10.1093/bioinformatics/btl033.
Article
CAS
PubMed
Google Scholar