Bothast RJ, Saha BC: Ethanol production from agricultural biomass substrate. Adv Appl Microbiol. 1997, 44: 261-286. full_text.
Article
CAS
Google Scholar
Zaldivar J, Nielsen J, Olsson L: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001, 56: 17-34. 10.1007/s002530100624.
Article
CAS
PubMed
Google Scholar
Outlaw J, Collins K, Duffield J: Agriculture as a producer and consumer of energy. 2005, CAB International, Wallingford, UK
Google Scholar
Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G: Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24: 549-556. 10.1016/j.tibtech.2006.10.004.
Article
PubMed
Google Scholar
Liu ZL, Saha BC, Slininger PJ: Lignocellulose biomass conversion to ethanol by Saccharomyces. Bioenergy. Edited by: Wall J, Harwood C, Demain A. 2008, Washington, DC: ASM Press, 17-36. 1
Chapter
Google Scholar
Sánchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008, 99: 5270-5295. 10.1016/j.biortech.2007.11.013.
Article
PubMed
Google Scholar
Wall JD, Harwood CS, Demain A: Bioenergy. 2008, ASM Press. Washington, DC, USA
Google Scholar
Vertes A, Qureshi N, Yukawa H, Blaschek H: Biomass to biofuels. 2010, Wiley, West Sussex
Book
Google Scholar
Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO: The generation of inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 1999, 24: 151-159. 10.1016/S0141-0229(98)00101-X.
Article
CAS
Google Scholar
Luo C, Brink DL, Blanch HW: Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy. 2002, 22: 125-138. 10.1016/S0961-9534(01)00061-7.
Article
CAS
Google Scholar
Klinke HB, Thomsen AB, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl Microbiol Biotechnol. 2004, 66: 10-26. 10.1007/s00253-004-1642-2.
Article
CAS
PubMed
Google Scholar
Chung IS, Lee YY: Ethanol fermentation of crude acid hydrolyzate of cellulose using high-level yeast inocula. Biotechnol Bioeng. 1985, 27: 308-315. 10.1002/bit.260270315.
Article
CAS
PubMed
Google Scholar
Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G: Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng. 1999, 87: 169-174. 10.1016/S1389-1723(99)89007-0.
Article
CAS
PubMed
Google Scholar
Liu ZL, Blaschek HP: Lignocellulosic biomass conversion to ethanol by Saccharomyces. Biomass to biofuels. Edited by: Vertes A, Qureshi N, Yukawa H, Blaschek H. 2010, West Sussex: Wiley, 17-36. 1
Google Scholar
Antal MJ, Leesomboon T, Mok WS, Richards GN: Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr Res. 1991, 217: 71-85. 10.1016/0008-6215(91)84118-X.
Article
CAS
Google Scholar
Lewkowski J: Synthesis, chemistry, and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc. 2001, 1: 17-54.
Google Scholar
Sanchez B, Bautista J: Effects of furfural and 5-hydroxymethylfurfrual on the fermentation of Saccharomyces cerevisiae and biomass production from Candida uilliermondii. Enzyme Microb Technol. 1988, 10: 315-318. 10.1016/0141-0229(88)90135-4.
Article
CAS
Google Scholar
Khan Q, Hadi S: Inactivation and repair of bacteriophage lambda by furfural. Biochem Mol Biol Int. 1994, 32: 379-385.
CAS
PubMed
Google Scholar
Modig T, Liden G, Taherzadeh M: Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase, and pyruvate dehydrogenase. Biochem J. 2002, 363: 769-776. 10.1042/0264-6021:3630769.
Article
CAS
PubMed Central
PubMed
Google Scholar
Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW: Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010, 3: 2-10.1186/1754-6834-3-2.
Article
PubMed Central
PubMed
Google Scholar
Morimoto S, Murakami M: Studies on fermentation products from aldehyde by microorganisms: the fermentative production of furfural alcohol from furfural by yeast (part I). J Ferment Technol. 1967, 45: 442-446.
CAS
Google Scholar
Villa GP, Bartroli R, Lopez R, Guerra M, Enrique M, Penas M, Rodriquez E, Redondo D, Jglesias I, Diaz M: Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol. 1992, 12: 509-512. 10.1002/abio.370120613.
Article
CAS
Google Scholar
Liu ZL: Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol. 2006, 73: 27-36. 10.1007/s00253-006-0567-3.
Article
CAS
PubMed
Google Scholar
Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW: Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol. 2004, 31: 345-352.
Article
CAS
PubMed
Google Scholar
Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G: Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2000, 53: 701-708. 10.1007/s002530000328.
Article
CAS
PubMed
Google Scholar
Liu ZL, Moon J, Andersh AJ, Slininger PJ, Weber S: Multiple gene mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008, 81: 743-753. 10.1007/s00253-008-1702-0.
Article
CAS
PubMed
Google Scholar
Liu ZL, Moon J: A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009, 446: 1-10. 10.1016/j.gene.2009.06.018.
Article
CAS
PubMed
Google Scholar
Liu ZL, Slininger PJ, Gorsich SW: Enhanced biotransformation of furfural and 5-hydroxy methylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol. 2005, 121-124: 451-460. 10.1385/ABAB:121:1-3:0451.
Article
CAS
PubMed
Google Scholar
Liu ZL, Ma M, Song M: Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics. 2009, 282: 233-244. 10.1007/s00438-009-0461-7.
Article
PubMed Central
PubMed
Google Scholar
Boorsma A, Foat BC, Vis D, Klis F, Bussemaker HJ: T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucl Acids Res. 2005, 33: W592-W595. 10.1093/nar/gki484.
Article
CAS
PubMed Central
PubMed
Google Scholar
Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sá-Correia I: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucl Acids Res. 2006, 34: D446-D451. 10.1093/nar/gkj013.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002, 298: 799-804. 10.1126/science.1075090.
Article
CAS
PubMed
Google Scholar
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature. 2004, 31: 99-104. 10.1038/nature02800.
Article
Google Scholar
Hahn JS, Neef DW, Thiele DJ: A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol. 2006, 60: 240-251. 10.1111/j.1365-2958.2006.05097.x.
Article
CAS
PubMed
Google Scholar
Larochelle M, Drouin S, Robert F, Turcotte B: Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol. 2006, 26: 6690-6701. 10.1128/MCB.02450-05.
Article
CAS
PubMed Central
PubMed
Google Scholar
Workman CT, Mak HC, McCuine S, Tagne JB, Agarwal M, Ozier O, Begley TJ, Samson LD, Ideker T: A systems approach to mapping DNA damage response pathways. Science. 2006, 312: 1054-1059. 10.1126/science.1122088.
Article
CAS
PubMed Central
PubMed
Google Scholar
Salin H, Fardeau V, Piccini E, Lelandais G, Tanty V, Lemoine S, Jacq C, Devaux F: Structure and properties of transcriptional networks driving selenite stress response in yeasts. BMC Genomics. 2008, 9: 333-10.1186/1471-2164-9-333.
Article
PubMed Central
PubMed
Google Scholar
Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B: Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol. 2004, 5: R95-10.1186/gb-2004-5-12-r95.
Article
PubMed Central
PubMed
Google Scholar
Fernandes L, Rodrigues-Pousada C, Struhl K: Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol. 1997, 17: 6982-6993.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nguyên DT, Alarco AM, Raymond M: Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J Biol Chem. 2001, 276: 1138-1145. 10.1074/jbc.M008377200.
Article
PubMed
Google Scholar
Dubacq C, Chevalier A, Courbeyrette R, Petat C, Gidrol X, Mann C: Role of the iron mobilization and oxidative stress regulons in the genomic response of yeast to hydroxyurea. Mol Genet Genomics. 2006, 275: 114-124. 10.1007/s00438-005-0077-5.
Article
CAS
PubMed
Google Scholar
Mamnun YM, Pandjaitan R, Mahé Y, Delahodde A, Kuchler K: The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol. 2002, 46: 1429-1440. 10.1046/j.1365-2958.2002.03262.x.
Article
CAS
PubMed
Google Scholar
Moye-Rowley WS: Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog Nucleic Acid Res Mol Biol. 2003, 73: 251-279. full_text.
Article
CAS
PubMed
Google Scholar
Jungwirth H, Kuchler K: Yeast ABC transporters -- a tale of sex, stress, drugs, and aging. FEBS Lett. 2006, 580: 1131-1138. 10.1016/j.febslet.2005.12.050.
Article
CAS
PubMed
Google Scholar
MacPherson S, Larochelle M, Turcotte B: A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev. 2006, 70: 583-604. 10.1128/MMBR.00015-06.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hellauer K, Rochon MH, Turcotte B: A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats. Mol Cell Biol. 1996, 16: 6096-6102.
Article
CAS
PubMed Central
PubMed
Google Scholar
Katzmann DJ, Hallstrom TC, Voet M, Wysock W, Golin J, Volckaert G, Moyle-Rowley WS: Expression of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae. Mol Cell Biol. 1995, 15: 6875-6883.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mahé Y, Lemoine Y, Kuchler K: The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem. 1996, 271: 25167-25172. 10.1074/jbc.271.41.25167.
Article
PubMed
Google Scholar
Wolfger H, Mahé Y, Parle-McDermott A, Delahodde A, Kuchler K: The yeast ATP binding cassette (ABC) proteins PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett. 1997, 418: 269-274. 10.1016/S0014-5793(97)01382-3.
Article
CAS
PubMed
Google Scholar
DeRisi J, van den Hazel B, Marc P, Balzi E, Brown P, Jacq C, Goffeau A: Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett. 2000, 470: 156-160. 10.1016/S0014-5793(00)01294-1.
Article
CAS
PubMed
Google Scholar
Onda M, Ota K, Chiba T, Sakaki Y, Ito T: Analysis of gene network regulating yeast multidrug resistance by artificial activation of transcription factors: involvement of Pdr3 in salt tolerance. Gene. 2004, 332: 51-59. 10.1016/j.gene.2004.02.003.
Article
CAS
PubMed
Google Scholar
Alenquer M, Tenreiro S, Sá-Correia I: Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinants TPO1 and PDR5. FEMS Yeast Res. 2006, 6: 1130-1139. 10.1111/j.1567-1364.2006.00095.x.
Article
CAS
PubMed
Google Scholar
Zhu Y, Xiao W: Pdr3 is required for DNA damage induction of MAG1 and DDI1 via a bi-directional promoter element. Nucl Acids Res. 2004, 32: 5066-5075. 10.1093/nar/gkh838.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kihara A, Igarashi Y: Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol Biol Cell. 2004, 15: 4949-4959. 10.1091/mbc.E04-06-0458.
Article
CAS
PubMed Central
PubMed
Google Scholar
Delahodde A, Delaveau T, Jacq C: Positive autoregulation of the yeast transcription factor Pdr3p, which is involved in control of drug resistance. Mol Cell Biol. 1995, 15: 4043-4051.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mannhaupt G, Schnall R, Karpov V, Vetter I, and Feldmann H: Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26 S proteasomal and other genes in yeast. FEBS Lett. 1999, 450: 27-34. 10.1016/S0014-5793(99)00467-6.
Article
CAS
PubMed
Google Scholar
Xie Y, Varshavsky A: RPN4 is a ligand, substrate, and transcriptional regulator of the 26 S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA. 2001, 98: 3056-3061. 10.1073/pnas.071022298.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ferguson SB, Anderson ES, Harshaw RB, Thate T, Craig NL, Nelson HC: Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics. 2005, 169: 1203-1214. 10.1534/genetics.104.034256.
Article
CAS
PubMed Central
PubMed
Google Scholar
De Rijcke M, Seneca S, Punyammalee B, Glansdorff N, Crabeel M: Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine. Mol Cell Biol. 1992, 12: 68-81.
Article
CAS
PubMed Central
PubMed
Google Scholar
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ: Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol. 2001, 21: 4347-4368. 10.1128/MCB.21.13.4347-4368.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G: A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006, 23: 455-464. 10.1002/yea.1370.
Article
CAS
PubMed
Google Scholar
Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G: Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol. 2005, 71: 7866-7871. 10.1128/AEM.71.12.7866-7871.2005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Heer D, Heine D, Sauer U: Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol. 2009, 75: 7631-7638. 10.1128/AEM.01649-09.
Article
CAS
PubMed Central
PubMed
Google Scholar
Alriksson B, Horváth IS, Jönsson LJ: Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem. 2010, 45: 264-271. 10.1016/j.procbio.2009.09.016.
Article
CAS
Google Scholar
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD: Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006, 71: 339-349. 10.1007/s00253-005-0142-3.
Article
CAS
PubMed
Google Scholar
Kuge S, Jones N: YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 1994, 13: 655-664.
CAS
PubMed Central
PubMed
Google Scholar
Morgan BA, Banks GR, Toone WM, Raitt D, Kuge S, Johnston LH: The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 1997, 16: 1035-1044. 10.1093/emboj/16.5.1035.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB: Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem. 1999, 274: 16040-16046. 10.1074/jbc.274.23.16040.
Article
CAS
PubMed
Google Scholar
Tan K, Feizi H, Luo C, Fan SH, Ravasi T, Ideker TG: A systems approach to delineate functions of paralogous transcription factors: role of the Yap family in the DNA damage response. Proc Natl Acad Sci USA. 2008, 105: 2934-2939. 10.1073/pnas.0708670105.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tomitori H, Kashiwagi K, Asakawa T, Kakinuma Y, Michael AJ, Igarashi K: Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem J. 2001, 353: 681-688. 10.1042/0264-6021:3530681.
Article
CAS
PubMed Central
PubMed
Google Scholar
Teixeira MC, Sá-Correia I: Saccharomyces cerevisiae resistance to chlorinated phenoxyacetic acid herbicides involves Pdr1p-mediated transcriptional activation of TPO1 and PDR5 genes. Biochem Biophys Res Commun. 2002, 292: 530-537. 10.1006/bbrc.2002.6691.
Article
CAS
PubMed
Google Scholar
Miura S, Zou W, Ueda M, Tanaka A: Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display. Appl Environ Microbiol. 2000, 66: 4883-4889. 10.1128/AEM.66.11.4883-4889.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ghosh AK, Ramakrishnan G, Rajasekharan R: YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem. 2008, 283: 9768-9775. 10.1074/jbc.M708418200.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen J, Derfler B, Samson L: Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage. EMBO J. 1990, 9: 4569-4575.
CAS
PubMed Central
PubMed
Google Scholar
Fu Y, Pastushok L, Xiao W: DNA damage-induced gene expression in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2008, 32: 908-926. 10.1111/j.1574-6976.2008.00126.x.
Article
CAS
PubMed
Google Scholar
Clarke DJ, Mondesert G, Segal M, Bertolaet BL, Jensen S, Wolff M, Henze M, Reed SI: Dosage suppressors of pds1 implicate ubiquitin-associated domains in checkpoint control. Mol Cell Biol. 2001, 21: 1997-2007. 10.1128/MCB.21.6.1997-2007.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Reed SH, You Z, Friedberg EC: The yeast RAD7 and RAD16 genes are required for postincision events during nucleotide excision repair. In vitro and in vivo studies with rad7 and rad16 mutants and purification of a Rad7/Rad16-containing protein complex. J Biol Chem. 1998, 273: 29481-29488. 10.1074/jbc.273.45.29481.
Article
CAS
PubMed
Google Scholar
Song M, Ouyang Z, Liu ZL: Discrete dynamic system modeling for gene regulatory networks of HMF tolerance for ethanologenic yeast. IET Sys Biology. 2009, 3: 203-218. 10.1049/iet-syb.2008.0089.
Article
CAS
Google Scholar
Song M, Liu ZL: A linear discrete dynamic system model for temporal gene interaction and regulatory network influence in response to bioethanol conversion inhibitor HMF for ethanologenic yeast. Lect Notes Bioinfomatics. 2007, 4532: 77-95.
Google Scholar
Goldberg AL: Protein degradation and protection against misfolded or damaged proteins. Nature. 2003, 426: 895-899. 10.1038/nature02263.
Article
CAS
PubMed
Google Scholar
Burnie JP, Carter TL, Hodgetts SJ, Matthews RC: Fungal heat-shock proteins in human disease. FEMS Microbiol Rev. 2006, 30: 53-88. 10.1111/j.1574-6976.2005.00001.x.
Article
CAS
PubMed
Google Scholar
Wang X, Xu H, Ha SW, Ju D, Xie Y: Proteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics. 2010, 184: 335-342. 10.1534/genetics.109.112227.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang X, Xu H, Ju D, Xie Y: Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics. 2008, 180: 1945-1953. 10.1534/genetics.108.094524.
Article
CAS
PubMed Central
PubMed
Google Scholar
Glickman MH, Ciechanover A: The ubiquitin proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002, 82: 373-428.
Article
CAS
PubMed
Google Scholar
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Véronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, 285: 901-906. 10.1126/science.285.5429.901.
Article
CAS
PubMed
Google Scholar
Liu ZL, Slininger PJ: Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR. J Microbiol Methods. 2007, 68: 486-496. 10.1016/j.mimet.2006.10.014.
Article
CAS
PubMed
Google Scholar
Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Earle-Hughes J, Snesrud E, Lee N, Quackenbush J: A concise guide to cDNA microarray analysis. BioTechniques. 2000, 29: 548-562.
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. Nat Genet. 2000, 25: 25-29. 10.1038/75556.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucl Acids Res. 2004, 32: 5539-5545. 10.1093/nar/gkh894.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu ZL, Palmquist DE, Ma M, Liu J, Alexander NJ: Application of a master equation for quantitative mRNA analysis using qRT-PCR. J Biotechnol. 2009, 143: 10-16. 10.1016/j.jbiotec.2009.06.006.
Article
CAS
PubMed
Google Scholar