Koenning SR, Overstreet C, Noling JW, Donald PA, Becker JO, Fortnum BA: Survey of Crop Losses in Response to Phytoparasitic Nematodes in the United States for 1994. Journal of Nematology. 1999, 31 (4S): 587-618.
CAS
PubMed
PubMed Central
Google Scholar
Sasser JN, Freckman DW: A world perspective on nematology: the role of the society. Vistas on Nematology. Edited by: Veek JS, Dickson DW. 1987, Hyattsville, MD: Society of Nematologists, 7-14.
Google Scholar
Caillaud MC, Dubreuil G, Quentin M, Barbeoch LP, Lecomte P, Engler J, Abad P, Rosso MN, Favery B: Root-knot nematodes manipulate plant cell functions during a compatible interaction. Journal of Plant Physiology. 2008, 165: 104-113. 10.1016/j.jplph.2007.05.007.
CAS
PubMed
Google Scholar
Bird DMcK: Manipulation of host gene expression by root-knot nematodes. J Parasitol. 1996, 82 (6): 881-888. 10.2307/3284193.
CAS
PubMed
Google Scholar
Williamson VM, Gleason CA: Plant-nematode interactions. Current Opinion in Plant Biology. 2003, 6: 327-333. 10.1016/S1369-5266(03)00059-1.
CAS
PubMed
Google Scholar
Bennett D: Root-knot nematodes in soybeans. 2010, Delta Farm Press, [http://deltafarmpress.com/soybeans/root-knot-nematodes-soybeans]
Google Scholar
Gheysen G, Fenoll C: Gene expression in nematode feeding sites. Ann Rev Phytopathol. 2002, 40: 191-210. 10.1146/annurev.phyto.40.121201.093719.
CAS
Google Scholar
Davis EL, Hussey RS, Baum TJ: Getting to the roots of parasitism by nematodes. Trends in Parasitol. 2004, 20 (3): 134-141. 10.1016/j.pt.2004.01.005.
Google Scholar
Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF: A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Planta. 2007, 226: 1423-1447. 10.1007/s00425-007-0581-4.
CAS
PubMed
Google Scholar
Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF: Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta. 2007, 226: 1389-1409. 10.1007/s00425-007-0578-z.
CAS
PubMed
Google Scholar
Klink VP, Matthews BF: The use of laser capture microdissection to study the infection of Glycine max (soybean) by Heterodera glycines (soybean cyst nematode). Plant Signaling &Behavior. 2008, 3 (2): 1-3.
Google Scholar
Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF: Syncytium gene expression in Glycine max [PI 88788] roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. Plant Physiology and Biochemistry. 2010, 48: 176-193. 10.1016/j.plaphy.2009.12.003.
CAS
PubMed
Google Scholar
Klink VP, Hosseini P, MacDonald MH, Alkharouf NW, Matthews BF: Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. BMC Genomics. 2009, 10: [http://www.biomedcentral.com/1471-2164/10/111]
Google Scholar
Ithal N, Recknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG: Parallel Genome-Wide Expression Profiling of Host and Pathogen During Soybean Cyst Nematode Infection of Soybean. Molec Plant Microbe Interact. 2007, 20 (3): 293-305. 10.1094/MPMI-20-3-0293.
CAS
Google Scholar
Ithal N, Recknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG: Developmental Transcript Profiling of Cyst Nematode Feeding Cells in Soybean Roots. Molec Plant Microbe Interact. 2007, 20 (5): 510-525. 10.1094/MPMI-20-5-0510.
CAS
Google Scholar
Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF: Syncytium gene expression in Glycine max [PI 88788] roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. Plant Physiology and Biochemistry. 2010, 48: 176-193. 10.1016/j.plaphy.2009.12.003.
CAS
PubMed
Google Scholar
Alkharouf NW, Klink VP, Chouikha IB, Beard HS, MacDonald MH, Meyer S, Knap HT, Khan R, Matthews BF: Time course microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode). Planta. 2006, 224: 838-852. 10.1007/s00425-006-0270-8.
CAS
PubMed
Google Scholar
Tremblay A, Hosseini P, Alkharouf NW, Li S, Scheffler BE, Matthews BF: Transcriptome analysis of a compatible response by Glycine max to Phakopsora pachyrhizi infection. Plant Science. 2010, 179 (3): 183-193. 10.1016/j.plantsci.2010.04.011.
CAS
Google Scholar
Ibrahim HMM, Alkharouf NW, Meyer SLF, Aly MAM, Gamal El-Din AY, Hussein EHA, Matthews BF: Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Experimental Parasitology. 2010, 127 (1): 90-99.
PubMed
Google Scholar
Dalzell JJ, McMaster S, Fleming CC, Maule AG: Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. Internat Journal of Parasitology. 2010, 40: 91-100. 10.1016/j.ijpara.2009.07.003.
CAS
Google Scholar
Charlton WL, Hare HYM, Bakhetia M, Hibbard JK, Atkinson HJ, McPherson MJ: Additive effects of plant expressed double-stranded RNAs on root-knot nematode development. Internat J Parasitol. 2010, 40 (7): 855-864. 10.1016/j.ijpara.2010.01.003.
CAS
Google Scholar
Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP: Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology. 2000, 2: 871-879. 10.1163/156854100750112815.
Google Scholar
Nitao JK, Meyer SLF, Oliver JE, Schmidt WF, Chitwood DJ: Isolation of flavipin, a fungus compound antagonistic to plant-parasitic nematodes. Nematology. 2002, 4: 55-63. 10.1163/156854102760082203.
CAS
Google Scholar
Byrd DW, Kirkpatrick T, Barker KR: An improved technique for clearing and staining plant tissue for detection of nematodes. Journal of Nematology. 1983, 15: 142-143.
Google Scholar
Mahalingan R, Skorupska HT: Cytological expression of early response to infection by Heterodera glycines, Ichinohe in resistant PI 437654 soybean. Genome. 1996, 39: 986-998. 10.1139/g96-123.
Google Scholar
The Affymetrix® website. [http://www.affymetrix.com/support/technical/datasheets/soybean_datasheet.pdf]
Tremblay A, Li S, Scheffler BE, Matthews BF: Laser capture microdissection and expressed sequence tag analysis of uredinia formed by Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Physiological and Molecular Plant Pathology. 2009, 73: 163-174.
Google Scholar
Rutledge RG, Stewart D: A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR. BMC Biotechnol. 2008, 8 (47): [http://www.biomedcentral.com/content/pdf/1472-6750-8-47.pdf]
Google Scholar
Van Loon LC, Rep M, Pieterse CMJ: Significance of Inducible Defense-related Proteins in Infected Plants. Ann Rev Phytopathol. 2006, 44: 135-162. 10.1146/annurev.phyto.44.070505.143425.
CAS
Google Scholar
Joube's J, Chamley ML, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C: A New C-Type Cyclin-Dependent Kinase from Tomato Expressed in Dividing Tissues Does Not Interact with Mitotic and G1 Cyclins1. Plant Physiology. 2001, 126: 1403-1415. 10.1104/pp.126.4.1403.
CAS
Google Scholar
Engler JA, Vleesschauwer VD, Burssens S, Celenza JLJ, Inzé D, Montagu MV, Engler G, Gheysen G: Molecular Markers and Cell Cycle Inhibitors Show the Importance of Cell Cycle Progression in Nematode-Induced Galls and Syncytia. The Plant Cell. 1999, 11: 793-807.
CAS
PubMed
PubMed Central
Google Scholar
Ramsay K, Wang Z, Jones MGK: Using laser capture microdissection to study gene expression in early stages of giant cells induced by root-knot nematodes. Molecular Plant Pathology. 2004, 5 (6): 587-592. 10.1111/j.1364-3703.2004.00255.x.
CAS
PubMed
Google Scholar
Nishitani K: A genome-based approach to study the mechanisms by which cell-wall type is defined and constructed by the collaborative actions of cell-wall-related enzymes. J Plant Res. 2002, 115: 303-307. 10.1007/s10265-002-0032-z.
CAS
PubMed
Google Scholar
Fosu-Nyarko J, Jones MGK, Wang Z: Functional characterization of transcripts expressed in early-stage Meloidogyne javanica-induced giant cells isolated by laser microdissection. Molecular Plant Pathology. 2009, 10: 237-248. 10.1111/j.1364-3703.2008.00526.x.
CAS
PubMed
Google Scholar
Goellner M, Wang X, Davis EL: Endo-1, 4-Glucanase Expression in Compatible Plant-Nematode Interactions. The Plant Cell. 2001, 13: 2241-2255.
CAS
PubMed
PubMed Central
Google Scholar
Mitchum MG, Sukno S, Wang X, Shani Z, Tsabary G, Shoseyov O, Davis EL: The promoter of the Arabidopsis thaliana Cel1 endo-1,4-Glucanase gene is differentially expressed in plant feeding cells induced by root-knot and cyst nematodes. Molecular Plant Pathology. 2004, 5 (3): 175-181. 10.1111/j.1364-3703.2004.00216.x.
CAS
PubMed
Google Scholar
Jammes F, Lecomte P, Engler JA, Bitton F, Magniette MLM, Renou JP, Abad P, Favery B: Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J. 2005, 44: 447-458. 10.1111/j.1365-313X.2005.02532.x.
CAS
PubMed
Google Scholar
Gal TZ, Aussenberg ER, Burdman S, Kapulnik Y, Koltai H: Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato. Planta. 2006, 224: 155-162. 10.1007/s00425-005-0204-x.
CAS
PubMed
Google Scholar
Barcala M, Garcoa A, Cabrer J, Casson S, Lindsey K, Favery B, Garcia-Casado G, Solano R, Fenoll C, Escobar C: Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J. 2010, 61: 698-712. 10.1111/j.1365-313X.2009.04098.x.
CAS
PubMed
Google Scholar
Wubben MJE, Rodermel SR, Baum TJ: Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots. The Plant Journal. 2004, 40: 712-724. 10.1111/j.1365-313X.2004.02257.x.
CAS
PubMed
Google Scholar
Lerner A, Sowinski SC, Valverde A, Lerner H, Dror R, Okon Y, Burdman S: The Azospirillum brasilense Sp7 noeJ and noel genes are involved in extracellular polysaccharide biosynthesis. Microbiology. 2009, 155: 4058-4068. 10.1099/mic.0.031807-0.
CAS
PubMed
Google Scholar
Tabata K, Takaoka T, Esaka M: Gene expression of ascorbic acid-related enzymes in tobacco. Photochemistry. 2002, 61: 631-635. 10.1016/S0031-9422(02)00367-9.
CAS
Google Scholar
Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL: Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci. 1999, 96: 4198-4203. 10.1073/pnas.96.7.4198.
CAS
PubMed
Google Scholar
Segarra G, Casanova1 E, Bellido D, Odena MA, Oliveira E, Trillas I: Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics. 2007, 7: 3943-3952. 10.1002/pmic.200700173.
CAS
PubMed
Google Scholar
Cui L, Chai Y, Li J, Liu H, Zhang L, Xue L: Identification of a glucose-6-phosphate isomerase involved in adaptation to salt stress of Dunaliella salina. Journal of Applied Phycology. 2009, 22 (5): 563-568.
Google Scholar
Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y: Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 1998, 39: 500-507.
CAS
Google Scholar
Nishitani K: A genome-based approach to study the mechanisms by which cell-wall type is defined and constructed by the collaborative actions of cell-wall-related enzymes. J Plant Res. 2002, 115: 303-307. 10.1007/s10265-002-0032-z.
CAS
PubMed
Google Scholar
Gobel C, Feussner I, Schmidt A, Scheel D, Serrano JS, Hamberg M, Rosah S: Oxylipin Profiling Reveals the Preferential Stimulation of the 9-Lipoxygenase Pathway in Elicitor-treated Potato Cells. J Biol Chem. 2001, 276 (9): 6267-6273. 10.1074/jbc.M008606200.
CAS
PubMed
Google Scholar
Reddy PS, Kumar TC, Reddy MN, Reddanna SP: Differential formation of octadecadienoic acid and octadecatrienoic acid products in control and injured/infected potato tubers. Biochimica et Biophysica Acta. 2000, 1483: 294-300.
CAS
PubMed
Google Scholar
Oshima M, Matsuoka M, Yamamoto N, Tanaka Y, Kano-Murakami Y, Ozeki Y, Kato A, Harada N, Ohashi Y: Nucleotide sequence of the PR-1 gene of Nicotiana tabacum. FEBS Letters. 1987, 225: 243-246. 10.1016/0014-5793(87)81166-3.
Google Scholar
White RF: Acetylslaicylic acid (aspirin) induces resitance to tobacco mosaic virus in tobacco. Virology. 1979, 99: 410-412. 10.1016/0042-6822(79)90019-9. 1979
CAS
PubMed
Google Scholar
Chen Z, Zhen Z, Huang J, Lai Z, Fan B: Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior. 2009, 4 (6): 493-496. 10.4161/psb.4.6.8392. 2009
CAS
Google Scholar
Wildermuth MC, Dewdney J, Wu G, Ausubel FM: Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001, 414: 562-565. 10.1038/35107108. 2001
CAS
PubMed
Google Scholar
Nawrath C, Métraux JP: Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell. 1999, 11: 1393-1404.
CAS
PubMed
PubMed Central
Google Scholar
Nandi B, Sukul NC, Banewee N, Sengupta S, Das P, Sinha BSP: Induction of pathogenesis-related protein by salicylic acid and resistance to root-knot nematode in tomato. Indian J Nematology. 2003, 33 (2): 111-116.
Google Scholar
Portillo M, Lindsey K, Casson S, Garcia-Casado G, Solano R, Fenol C, Escoba C: Isolation of RNA from laser-capture-microdissected giant cells at early differentiation stages suitable for differential transcriptome analysis. Molecular Plant Pathology. 2009, 10: 523-535. 10.1111/j.1364-3703.2009.00552.x.
CAS
PubMed
PubMed Central
Google Scholar
Fuller VC, Lilley CJ, Atkinson HJ, Urwin PE: Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Molec Plant Pathol. 2007, 8: 595-609. 10.1111/j.1364-3703.2007.00416.x.
CAS
Google Scholar