WHO: WHO REPORT 2010: Global Tuberculosis Control. 2010, Switzerland
Google Scholar
WHO: BCG Vaccine. Weekly Epidemiological Record. 2004, 4
Tuberculosis. [http://www.who.int/topics/tuberculosis/en/]
Fine PE: BCG vaccination against tuberculosis and leprosy. Br Med Bull. 1988, 44 (3): 691-703.
CAS
PubMed
Google Scholar
Trunz BB, Fine P, Dye C: Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet. 2006, 367 (9517): 1173-1180. 10.1016/S0140-6736(06)68507-3.
Article
PubMed
Google Scholar
Mendoza-Coronel E, Camacho-Sandoval R, Bonifaz LC, Lopez-Vidal Y: PD-L2 induction on dendritic cells exposed to Mycobacterium avium downregulates BCG-specific T cell response. Tuberculosis (Edinb). 2011, 91 (1): 36-46. 10.1016/j.tube.2010.11.008.
Article
CAS
Google Scholar
Liu J, Tran V, Leung AS, Alexander DC, Zhu B: BCG vaccines: their mechanisms of attenuation and impact on safety and protective efficacy. Hum Vaccin. 2009, 5 (2): 70-78. 10.4161/hv.5.2.7210.
Article
CAS
PubMed
Google Scholar
Oettinger T, Jorgensen M, Ladefoged A, Haslov K, Andersen P: Development of the Mycobacterium bovis BCG vaccine: review of the historical and biochemical evidence for a genealogical tree. Tuber Lung Dis. 1999, 79 (4): 243-250. 10.1054/tuld.1999.0206.
Article
CAS
PubMed
Google Scholar
Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S, Lacroix C, Garcia-Pelayo C, et al: Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci USA. 2007, 104 (13): 5596-5601. 10.1073/pnas.0700869104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brosch R, Gordon SV, Buchrieser C, Pym AS, Garnier T, Cole ST: Comparative genomics uncovers large tandem chromosomal duplications in Mycobacterium bovis BCG Pasteur. Yeast. 2000, 17 (2): 111-123. 10.1002/1097-0061(20000630)17:2<111::AID-YEA17>3.0.CO;2-G.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM: Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999, 284 (5419): 1520-1523. 10.1126/science.284.5419.1520.
Article
CAS
PubMed
Google Scholar
Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK: Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol. 1996, 178 (5): 1274-1282.
CAS
PubMed
PubMed Central
Google Scholar
Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, et al: The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA. 2003, 100 (21): 12420-12425. 10.1073/pnas.1635213100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR: Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J Infect Dis. 2003, 187 (1): 117-123. 10.1086/345862.
Article
PubMed
Google Scholar
Pym AS, Brodin P, Brosch R, Huerre M, Cole ST: Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol. 2002, 46 (3): 709-717. 10.1046/j.1365-2958.2002.03237.x.
Article
CAS
PubMed
Google Scholar
Kozak R, Behr MA: Divergence of immunologic and protective responses of different BCG strains in a murine model. Vaccine. 2010, 29 (7): 1519-1526.
Article
PubMed
Google Scholar
Castillo-Rodal AI, Castanon-Arreola M, Hernandez-Pando R, Calva JJ, Sada-Diaz E, Lopez-Vidal Y: Mycobacterium bovis BCG substrains confer different levels of protection against Mycobacterium tuberculosis infection in a BALB/c model of progressive pulmonary tuberculosis. Infect Immun. 2006, 74 (3): 1718-1724. 10.1128/IAI.74.3.1718-1724.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behr MA, Schroeder BG, Brinkman JN, Slayden RA, Barry CE: A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927. J Bacteriol. 2000, 182 (12): 3394-3399. 10.1128/JB.182.12.3394-3399.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker KB, Brennan MJ, Ho MM, Eskola J, Thiry G, Sadoff J, Dobbelaer R, Grode L, Liu MA, Fruth U, et al: The second Geneva Consensus: Recommendations for novel live TB vaccines. Vaccine. 2010, 28 (11): 2259-2270. 10.1016/j.vaccine.2009.12.083.
Article
CAS
PubMed
Google Scholar
Hayashi D, Takii T, Mukai T, Makino M, Yasuda E, Horita Y, Yamamoto R, Fujiwara A, Kanai K, Kondo M, et al: Biochemical characteristics among Mycobacterium bovis BCG substrains. FEMS Microbiol Lett. 2010, 306 (2): 103-109. 10.1111/j.1574-6968.2010.01947.x.
Article
CAS
PubMed
Google Scholar
Sosa J: Métodos utilizados en el estudio de la vacuna BCG. Salud Pública de México. 1967, IX (2): 213-219.
Google Scholar
P León A: S.S.A. Laboratorio de Producción de Vacuna B.C.G. Salud Pública de México. 1963, V (6): 1006-1011.
Google Scholar
P León A, Jiménez M: La vacunación contra la tuberculosis en México. Boletín de la oficina Sanitaria Panamericana. 1950, 29 (1): 7-13.
Google Scholar
Instituto-Nacional-de-Higiene: Cien años de lucha por la salud. 1995, Primera Edición edn. México: Grupo DESEA, S.A. de C.V
Google Scholar
Fernández d Castro J: Estado actual de la vacunación con BCG. Gaceta Médica de México. 1976, III (4): 271-279.
Google Scholar
Hayashi D, Takii T, Fujiwara N, Fujita Y, Yano I, Yamamoto S, Kondo M, Yasuda E, Inagaki E, Kanai K, et al: Comparable studies of immunostimulating activities in vitro among Mycobacterium bovis bacillus Calmette-Guerin (BCG) substrains. FEMS Immunol Med Microbiol. 2009, 56 (2): 116-128. 10.1111/j.1574-695X.2009.00559.x.
Article
CAS
PubMed
Google Scholar
Seki M, Honda I, Fujita I, Yano I, Yamamoto S, Koyama A: Whole genome sequence analysis of Mycobacterium bovis bacillus Calmette-Guerin (BCG) Tokyo 172: a comparative study of BCG vaccine substrains. Vaccine. 2009, 27 (11): 1710-1716. 10.1016/j.vaccine.2009.01.034.
Article
CAS
PubMed
Google Scholar
Lynett J, Stokes RW: Selection of transposon mutants of Mycobacterium tuberculosis with increased macrophage infectivity identifies fadD23 to be involved in sulfolipid production and association with macrophages. Microbiology. 2007, 153 (Pt 9): 3133-3140.
Article
CAS
PubMed
Google Scholar
Molina-Olvera G: Sobrevivencia y multiplicidad de distintas subcepas de Mycobacterium bovis BCG en macrófagos de la línea celular THP-I. 2010, México: Universidad Nacional Autónoma de México
Google Scholar
Alam MS, Garg SK, Agrawal P: Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J. 2009, 276 (1): 76-93. 10.1111/j.1742-4658.2008.06755.x.
Article
CAS
PubMed
Google Scholar
Garcia Pelayo MC, Uplekar S, Keniry A, Mendoza Lopez P, Garnier T, Nunez Garcia J, Boschiroli L, Zhou X, Parkhill J, Smith N, et al: A comprehensive survey of single nucleotide polymorphisms (SNPs) across Mycobacterium bovis strains and M. bovis BCG vaccine strains refines the genealogy and defines a minimal set of SNPs that separate virulent M. bovis strains and M. bovis BCG strains. Infect Immun. 2009, 77 (5): 2230-2238. 10.1128/IAI.01099-08.
Article
PubMed
PubMed Central
Google Scholar
Charlet D, Mostowy S, Alexander D, Sit L, Wiker HG, Behr MA: Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol Microbiol. 2005, 56 (5): 1302-1313. 10.1111/j.1365-2958.2005.04618.x.
Article
CAS
PubMed
Google Scholar
Bai G, Gazdik MA, Schaak DD, McDonough KA: The Mycobacterium bovis BCG cyclic AMP receptor-like protein is a functional DNA binding protein in vitro and in vivo, but its activity differs from that of its M. tuberculosis ortholog, Rv3676. Infect Immun. 2007, 75 (11): 5509-5517. 10.1128/IAI.00658-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glickman MS, Cox JS, Jacobs WR: A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell. 2000, 5 (4): 717-727. 10.1016/S1097-2765(00)80250-6.
Article
CAS
PubMed
Google Scholar
Rao V, Fujiwara N, Porcelli SA, Glickman MS: Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med. 2005, 201 (4): 535-543. 10.1084/jem.20041668.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parish T, Smith DA, Roberts G, Betts J, Stoker NG: The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology. 2003, 149 (Pt 6): 1423-1435.
Article
CAS
PubMed
Google Scholar
Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR: The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol. 2007, 189 (15): 5495-5503. 10.1128/JB.00190-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandal OH, Roberts JA, Odaira T, Schnappinger D, Nathan CF, Ehrt S: Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol. 2009, 191 (2): 625-631. 10.1128/JB.00932-08.
Article
CAS
PubMed
Google Scholar
Sampson SL: Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol. 2011, 2011: 497203-
Article
PubMed
PubMed Central
Google Scholar
Sassetti CM, Boyd DH, Rubin EJ: Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003, 48 (1): 77-84. 10.1046/j.1365-2958.2003.03425.x.
Article
CAS
PubMed
Google Scholar
Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, Halada P, Lamer S, Hagens K, Kaufmann SH: Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol. 1999, 33 (6): 1103-1117.
Article
CAS
PubMed
Google Scholar
Rodriguez-Alvarez M, Mendoza-Hernandez G, Encarnacion S, Calva JJ, Lopez-Vidal Y: Phenotypic differences between BCG vaccines at the proteome level. Tuberculosis (Edinb). 2009, 89 (2): 126-135. 10.1016/j.tube.2008.12.001.
Article
CAS
Google Scholar
Rodriguez-Alvarez M, Palomec-Nava ID, Mendoza-Hernandez G, Lopez-Vidal Y: The secretome of a recombinant BCG substrain reveals differences in hypothetical proteins. Vaccine. 2010, 28 (23): 3997-4001. 10.1016/j.vaccine.2010.01.064.
Article
CAS
PubMed
Google Scholar
Liu K, Ba X, Yu J, Li J, Wei Q, Han G, Li G, Cui Y: The phosphoenolpyruvate carboxykinase of Mycobacterium tuberculosis induces strong cell-mediated immune responses in mice. Mol Cell Biochem. 2006, 288 (1-2): 65-71. 10.1007/s11010-006-9119-5.
Article
CAS
PubMed
Google Scholar
Liu K, Yu J, Russell DG: pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology. 2003, 149 (Pt 7): 1829-1835.
Article
CAS
PubMed
Google Scholar
Armitige LY, Jagannath C, Wanger AR, Norris SJ: Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun. 2000, 68 (2): 767-778. 10.1128/IAI.68.2.767-778.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heym B, Stavropoulos E, Honore N, Domenech P, Saint-Joanis B, Wilson TM, Collins DM, Colston MJ, Cole ST: Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun. 1997, 65 (4): 1395-1401.
CAS
PubMed
PubMed Central
Google Scholar
Leung AS, Tran V, Wu Z, Yu X, Alexander DC, Gao GF, Zhu B, Liu J: Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. BMC Genomics. 2008, 9: 413-10.1186/1471-2164-9-413.
Article
PubMed
PubMed Central
Google Scholar
Sonnenberg JTBaMG: Isolation of Genomic DNA from Mycobacteria. Mycobacteria Protocols. Edited by: Stoker TPaNG. 1998, New Jersey: Human Press, 101:
Google Scholar
Bedwell J, Kairo SK, Behr MA, Bygraves JA: Identification of substrains of BCG vaccine using multiplex PCR. Vaccine. 2001, 19 (15-16): 2146-2151. 10.1016/S0264-410X(00)00369-8.
Article
CAS
PubMed
Google Scholar
Phred, Phrap, Consed. [http://www.phrap.org/phredphrapconsed.html]
Rapid Annotation using Subsystem Technology. [http://rast.nmpdr.org/]
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al: The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008, 9: 75-10.1186/1471-2164-9-75.
Article
PubMed
PubMed Central
Google Scholar
Berriman M, Rutherford K: Viewing and annotating sequence data with Artemis. Brief Bioinform. 2003, 4 (2): 124-132. 10.1093/bib/4.2.124.
Article
CAS
PubMed
Google Scholar
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics. 2000, 16 (10): 944-945. 10.1093/bioinformatics/16.10.944.
Article
CAS
PubMed
Google Scholar
BCGList. [http://genolist.pasteur.fr/BCGList/]
Basic Local Alignment and Search Tool. [http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi]