Senti K-A, Brennecke J: The piRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet. 2010, 26 (12): 499-509. 10.1016/j.tig.2010.08.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito K, Siomi MC: Small RNA-mediated quiescence of transposable elements in animals. Developmental Cell. 2010, 19: 687-697. 10.1016/j.devcel.2010.10.011.
Article
CAS
PubMed
Google Scholar
Siomi MC, Miyoshi T, Siomi H: piRNA-mediated silencing in Drosophila germlines. Semin Cel Dev Biol. 2010, 21 (7): 754-759. 10.1016/j.semcdb.2010.01.011.
Article
CAS
Google Scholar
Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Fejes-Toth K, Bestor T, Hannon GJ: A piRNA pathway primed by individual transposons in linked to de novo methylation in mice. Mol Cell. 2008, 31: 785-799. 10.1016/j.molcel.2008.09.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, et al: A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell. 2007, 129: 69-82. 10.1016/j.cell.2007.03.026.
Article
CAS
PubMed
Google Scholar
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007, 128 (6): 1089-1103. 10.1016/j.cell.2007.01.043.
Article
CAS
PubMed
Google Scholar
Vagin VV, Sigova A, C L, Gvozdev V, Zamore PD: A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006, 313: 320-324. 10.1126/science.1129333.
Article
CAS
PubMed
Google Scholar
Siomi MC, Sato. K, Pezic D, Aravin AA: PIWI-interacting small RNAs: the vanguard of genome defence. Nature Reviews: Mol Cell Biol. 2011, 12: 246-258. 10.1038/nrm3089.
Article
CAS
Google Scholar
Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannnon GJ: Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 2009, 137: 522-535. 10.1016/j.cell.2009.03.040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung W-J, Okamura K, Martin R, Lai EC: Endogenous RNA interference provdes a somatic defense against Drosophila transposons. Current Biology. 2008, 18: 795-802. 10.1016/j.cub.2008.05.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, Blower MD, Lai EC: A broadly conserved primary pathway generates 3'UTR-direceted primary piRNAs. Current Biology. 2009, 19: 2066-2076. 10.1016/j.cub.2009.11.064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau NC, Robine N, Martin R, Chung W-J, Niki Y, Berezikov E, Lai EC: Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Research. 2009, 19 (10): 1776-1785. 10.1101/gr.094896.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khurana JS, Theurkauf W: piRNAs, transposon silencing, and Drosophila germline development. J Cell Biol. 2010, 191 (5): 905-913. 10.1083/jcb.201006034.
Article
PubMed
PubMed Central
Google Scholar
Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, et al: The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biology. 2002, 3: 0084.0081-0084.0020.
Article
Google Scholar
Smith CD, Shu S, Mungall CJ, Karpen GH: The release 5.1 annotation of Drosophila melanogaster heterochromatin. Science. 2007, 316: 1586-1591. 10.1126/science.1139815.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nene V, Wortman JR, Lawson D, Haas B: Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007, 316 (5832): 1718-1723. 10.1126/science.1138878.
Article
CAS
PubMed
Google Scholar
Kokoza V, Ahmed A, Wimmer EA, Raikhel AS: Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFPafm]. Insect Biochem Mol Biol. 2001, 31: 1137-1143. 10.1016/S0965-1748(01)00120-5.
Article
CAS
PubMed
Google Scholar
Nimmo DD, Alphey L, Meredith JM, P E: High efficiency site-specific engineering of the mosquito genome. Insect Mol Biol. 2006, 15: 129-136. 10.1111/j.1365-2583.2006.00615.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attardo GM, Higgs S, Klingler KA, Vanlandingham DL, Raikhel AS: RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2003, 100 (23): 13374-13379. 10.1073/pnas.2235649100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clemons A, Haugen M, Severson D, Duman-Scheel M: Functional analysis of gene in Aedes aegypti embryos. Cold Spring Harb Protoc. 2010
Google Scholar
Smith RC, Atkinson PW: Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti. Genetica. 2010, 139 (1): 7-22.
Article
PubMed
PubMed Central
Google Scholar
O'Brochta DA, Sethuramuran N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi DK, Jasinskiene N, Coates CJ, James AA, et al: Gene vector and transposable element behavior in mosquitoes. Journal of Experimental Biology. 2003, 3823-3834.
Google Scholar
Wilson R, Orsetti J, Klocko AK, Aluvihare C, Peckham E, Atkinson PW, Lehane MJ, O'Brochta DA: Post-integration behavior of a Mos1 mariner gene vector in Aedes aegypti. Insect Biochem Mol Biol. 2003, 33: 853-863. 10.1016/S0965-1748(03)00044-4.
Article
CAS
PubMed
Google Scholar
Sethuraman N, Fraser MJ, Eggleston P, O'Brochta DA: Post-integration stability of piggyBac in Aedes aegypti. Insect Biochem Mol Biol. 2007, 37 (9): 941-951. 10.1016/j.ibmb.2007.05.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, Klingler M, Bucher G, Brown SJ: Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biology. 2009, 7: 73-10.1186/1741-7007-7-73.
Article
PubMed
PubMed Central
Google Scholar
Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, et al: A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet. 2004, 36 (3): 283-287. 10.1038/ng1314.
Article
CAS
PubMed
Google Scholar
Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005, 122: 473-483. 10.1016/j.cell.2005.07.013.
Article
CAS
PubMed
Google Scholar
O'Donnell KA, Boeke JD: Mighty Piwia defend the genome against genome intruders. Cell. 2007, 129: 37-44. 10.1016/j.cell.2007.03.028.
Article
PubMed
PubMed Central
Google Scholar
Vagin VV, Klenov MS, Kalmykova AI, Stolyarenko AD, Kotelnikov RN, Gvozdev VA: The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol. 2004, 1 (1): 54-58.
Article
CAS
PubMed
Google Scholar
Cox DN, Chao A, Lin H: Piwi encodes a nucleoplasmic factor whose activity modulates the number and divsion rate of germ-line stem cells. Development. 2000, 127: 503-514.
CAS
PubMed
Google Scholar
Brennecke JB, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GL: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007, 128: 1089-1103. 10.1016/j.cell.2007.01.043.
Article
CAS
PubMed
Google Scholar
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC: A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science. 2007, 315 (5818): 1587-1590. 10.1126/science.1140494.
Article
CAS
PubMed
Google Scholar
Saito K, Sakaguchi Y, Suzuki T, Suzunki T, Siomi H, Siomi MC: Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi-interacting RNAs at their 3' ends. Genes & Development. 2007, 21: 1603-1608. 10.1101/gad.1563607.
Article
CAS
Google Scholar
Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, Zamore PD: The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Current Biology. 2007, 17: 1265-1272. 10.1016/j.cub.2007.06.030.
Article
CAS
PubMed
Google Scholar
Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ: An epigenetic role for maternally inherited piRNAs in transposon silencing. Science. 2008, 322: 1387-1392. 10.1126/science.1165171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen PA, Stuart JR, Goodpaster MP, Goodman JW, Simmons MJ: Cytoptype regulation of P transposable elements in Drosophila melanogaster: repressor polypeptides or piRNAs?. Genetics. 2008, 179: 1785-1793. 10.1534/genetics.108.087072.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell CL, Black WCBI, Hess AM, Foy BD: Comparative genomics of small regulatory pathway components in vector mosquitoes. BMC Genomics. 2008, 9: 425-10.1186/1471-2164-9-425.
Article
PubMed
PubMed Central
Google Scholar
Carthew RW, Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell. 2009, 136: 632-655.
Article
Google Scholar
Smith RC, Walter MF, Hice RH, O'Brochta DA, Atkinson PW: Testis-specific expression of the ß2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect Mol Biol. 2007, 16: 61-71. 10.1111/j.1365-2583.2006.00701.x.
Article
CAS
PubMed
Google Scholar
O'Brochta DA, Stosic CD, Pilitt K, Subramanian RA, Hice R, Atkinson PW: Transpositionally active episomal hAT elements. BMC Mol Biol. 2009, 14 (10): 108-
Article
Google Scholar
Sethuraman N, Fraser MJJ, Eggleston P, O'Brochta DA: Post-integration stability of piggyBac in Aedes aegypt i. Insect Biochem Mol Biol. 2007, 37 (9): 941-951. 10.1016/j.ibmb.2007.05.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malone CD, Hannon GJ: Small RNAs as guardians of the genome. Cell. 2009, 136: 656-668. 10.1016/j.cell.2009.01.045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawaoka S, Hayashi N, Katsuma S, Kishino H, Kohara Y, Mita K, Shimada T: Bombyx small RNAs: Genomic defense system against transposon in the silkworm, Bombyx mori. Insect Biochem Molec Biol. 2008
Google Scholar
Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC: Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 2006, 20: 2214-2222. 10.1101/gad.1454806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Betel D, Sheridan R, Marks DS, Sander C: Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput Biol. 2007, 3 (11): e222-10.1371/journal.pcbi.0030222.
Article
PubMed
PubMed Central
Google Scholar
Handler D, Olivieri D, Novatchkova M, Gruber FS, Meixner K, Mechtler K, Stark A, Sachidanaandam R, Brennecke J: A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J. 2011, 30: 3977-3993. 10.1038/emboj.2011.308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozhkov NV, Aravin AA, Zelentsova ES, Schostak NG, Sachidanandam R, McCombie WR, Hannon GJ, Evgen'ev MB: Small RNA-based silencing strategies for transposons in the process of invading Drosophila species. RNA. 2010, 16: 1634-1645. 10.1261/rna.2217810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, Rokas A: Benchmarking next-generation transcriptome sequencing for functional and evoltionary genomics. Mol Biol Evol. 2009, 26 (12): 2731-2744. 10.1093/molbev/msp188.
Article
CAS
PubMed
Google Scholar
Jurka J: Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 2000, 16 (9): 418-420. 10.1016/S0168-9525(00)02093-X.
Article
CAS
PubMed
Google Scholar
Arensburger P, Hice RH, Zhou L, Smith RC, Tom AC, Wright JA, J. K, O'Brochta DA, Craig NL, Atkinson PW: Phylogenetic and functional characterization of the hAT transposon superfamily. Genetics. 2011, 188 (1): 45-57. 10.1534/genetics.111.126813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coy MR, Tu Z: Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species. Insect Mol Biol. 2007, 16 (4): 411-421. 10.1111/j.1365-2583.2007.00735.x.
Article
CAS
PubMed
Google Scholar
Biedler JK, Tu Z: The Juan non-LTR retrotransposon in mosquitoes: genomic impact, vertical transmission and indications of recent and widespread activity. BMC Evolutionary Biology. 2007, 7: 112-10.1186/1471-2148-7-112.
Article
PubMed
PubMed Central
Google Scholar
Tu Z, Isoe J, Guzova JA: Strutural, genomic, and phylogenetic analyssis of Lian, a novel family of non-LTR retrotransposons in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol. 1998, 15 (7):
Tu Z, Hill JJ: MosquI, a novel family of mosquito retrotransposons distantly related to the Drosophila I factors, may consist of elements of more than one origin. Mol Biol Evol. 1999, 16 (12): 1675-1686.
Article
CAS
PubMed
Google Scholar
Czech B, Malone CD, Zhou R, Stark A, Schlingheyde C, Dus M, Perrrimon N, Kellis M, Wohlshlegel JA, Sachidanaandam R, et al: An endogenous small interfering RNA pathway in Drosophila. Nature. 2008, 453: 798-804. 10.1038/nature07007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler ELW, Zapp ML, Weng Z, et al: Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science. 2008, 320: 1077-1081. 10.1126/science.1157396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, Okada TN, Siomi MC, Siomi H: Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature. 2008, 453: 793-798. 10.1038/nature06938.
Article
CAS
PubMed
Google Scholar
Siomi MC, Sato K, Pezic D, Aravin AA: PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011, 12 (4): 246-258. 10.1038/nrm3089.
Article
CAS
PubMed
Google Scholar
Nishida KM, Saito K, Mori T, Kawamura Y, Nagami-Okada T, Inagaki S, Siomi H, Siomi MC: Gene silencing mechanisms mediated by Aubergine-piRNA complexes in Drosophila male gonad. RNA. 2007, 13: 1911-1922. 10.1261/rna.744307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, Kotani H, Asai K, Siomi H, Siomi MC: A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature. 2009, 461: 1296-1299. 10.1038/nature08501.
Article
CAS
PubMed
Google Scholar
Myles KM, Wiley MR, Morazzani EM, Adelman ZN: Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad, Sci USA. 2008, 105 (50): 19938-19943. 10.1073/pnas.0803408105.
Article
CAS
Google Scholar
Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, et al: C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Neglected Tropical Diseases. 2010, 4 (10): e856-10.1371/journal.pntd.0000856.
Article
PubMed
PubMed Central
Google Scholar
Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE, Barbacioru C, Monighetti C, Campbell CL: Small RNA profiling of dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiology. 2011, 11: 45-10.1186/1471-2180-11-45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Findley SD, Tamanaha M, Clegg NJ, Ruohola-Baker H: Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development. 2003, 130: 859-871. 10.1242/dev.00310.
Article
CAS
PubMed
Google Scholar
Soper SFC, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, Bortvin A: Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meosis. Developmental Cell. 2008, 15: 285-297. 10.1016/j.devcel.2008.05.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim AK, Kai T: Unique germ-line organelle, nuage functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad, Sci USA. 2007, 104 (16): 6714-6719. 10.1073/pnas.0701920104.
Article
CAS
Google Scholar
Feschotte C, Zhang X, Wessler S: Miniature inverted-repeat transposable elements (MITEs) and their relationship with established DNA transposons. Mobile DNA II. Edited by: Craig NL, Craigie R, Gellert M, Lambowitz AM. 2002, Washington, DC: American Society for Microbiology Press, 1147-1158.
Chapter
Google Scholar
Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B: Identification of minature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional impllications for MITEs. Genome Research. 2009, 19: 42-56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piriyapongsa J, Marino-Ramirez L, Jordan IK: Origin and evolution of human microRNAs from transposable elements. Genetics. 2007, 176: 1323-1337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piriyapongsa J, Jordan IK: Dual coding of siRNAs and miRNAs by plant transposable elements. RNA. 2008, 14: 814-821. 10.1261/rna.916708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, He Y, Amasino R, Chen X: siRNAs trageting an intronic transposin in the regulation of natural flowering behavior in Arabidopsis. Genes & Development. 2004, 18: 2873-2878. 10.1101/gad.1217304.
Article
CAS
Google Scholar
Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA: Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster g ermline. Curr Biol. 2001, 11 (13): 1017-1027. 10.1016/S0960-9822(01)00299-8.
Article
CAS
PubMed
Google Scholar
Soper SFC, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, Bortvin A: Mouse Maelstrom, a component of nuage is essential for spermatogenesis and transposon repression in meiosis. Developmental Cell. 2008, 15: 285-297. 10.1016/j.devcel.2008.05.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott JC, Brackney DE, Campbell CL, Bondu-Hawkins V, Hjelle B, Ebel GD, Olson KE, Blair CD: Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PlOS NTM. 2010, 4: (10)-
Google Scholar
O'Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi dK, Jasinskiene J, Coates CJ, James AA, et al: Gene vector and transposable element behavior in mosquitoes. J Experimental Biol. 2003, 206: 3823-3834. 10.1242/jeb.00638.
Article
Google Scholar
Langmead B, Trapnell C, Pop M, Salzber SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10 (3): R25-10.1186/gb-2009-10-3-r25.
Article
PubMed
PubMed Central
Google Scholar
Kent WJ: BLAT - the BLAST - like alignment tool. Genome Res. 2002, 12: 656-664.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res. 2004, 14 (6): 1188-1190. 10.1101/gr.849004.
Article
CAS
PubMed
PubMed Central
Google Scholar