Yen PM: Physiological and molecular basis of thyroid hormone action. Physiological reviews. 2001, 81 (3): 1097-1142.
CAS
PubMed
Google Scholar
Glass CK: Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994, 15 (3): 391-407.
CAS
PubMed
Google Scholar
Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG: RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. The EMBO journal. 1992, 11 (4): 1409-1418.
CAS
PubMed
PubMed Central
Google Scholar
Lazar MA, Berrodin TJ, Harding HP: Differential DNA binding by monomeric, homodimeric, and potentially heteromeric forms of the thyroid hormone receptor. Molecular and cellular biology. 1991, 11 (10): 5005-5015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oerbeck B, Reinvang I, Sundet K, Heyerdahl S: Young adults with severe congenital hypothyroidism: cognitive event related potentials (ERPs) and the significance of an early start of thyroxine treatment. Scand J Psychol. 2007, 48 (1): 61-67. 10.1111/j.1467-9450.2006.00545.x.
Article
PubMed
Google Scholar
Goodman JH, Gilbert ME: Modest thyroid hormone insufficiency during development induces a cellular malformation in the corpus callosum: a model of cortical dysplasia. Endocrinology. 2007, 148 (6): 2593-2597. 10.1210/en.2006-1276.
Article
CAS
PubMed
Google Scholar
Auso E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale De Escobar G, Berbel P: A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology. 2004, 145 (9): 4037-4047. 10.1210/en.2004-0274.
Article
CAS
PubMed
Google Scholar
Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O'Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, et al: Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. The New England journal of medicine. 1999, 341 (8): 549-555. 10.1056/NEJM199908193410801.
Article
CAS
PubMed
Google Scholar
Brucker-Davis F: Effects of environmental synthetic chemicals on thyroid function. Thyroid. 1998, 8 (9): 827-856. 10.1089/thy.1998.8.827.
Article
CAS
PubMed
Google Scholar
Jugan ML, Levi Y, Blondeau JP: Endocrine disruptors and thyroid hormone physiology. Biochemical pharmacology. 2010, 79 (7): 939-947. 10.1016/j.bcp.2009.11.006.
Article
CAS
PubMed
Google Scholar
Blount BC, Pirkle JL, Osterloh JD, Valentin-Blasini L, Caldwell KL: Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environmental health perspectives. 2006, 114 (12): 1865-1871.
CAS
PubMed
PubMed Central
Google Scholar
Crinnion WJ: Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Altern Med Rev. 2011, 16 (1): 5-13.
PubMed
Google Scholar
Zoeller RT, Bansal R, Parris C: Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology. 2005, 146 (2): 607-612.
Article
CAS
PubMed
Google Scholar
Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PR, Birnbaum LS: Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci. 2009, 107 (1): 27-39.
Article
CAS
PubMed
Google Scholar
Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL, Stoker TE: The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol Sci. 2009, 107 (1): 56-64.
Article
CAS
PubMed
Google Scholar
Zaki A, Ait Chaoui A, Talibi A, Derouiche AF, Aboussaouira T, Zarrouck K, Chait A, Himmi T: Impact of nitrate intake in drinking water on the thyroid gland activity in male rat. Toxicology letters. 2004, 147 (1): 27-33. 10.1016/j.toxlet.2003.10.010.
Article
CAS
PubMed
Google Scholar
Dong H, Yauk CL, Rowan-Carroll A, You SH, Zoeller RT, Lambert I, Wade MG: Identification of thyroid hormone receptor binding sites and target genes using ChIP-on-chip in developing mouse cerebellum. PLoS ONE. 2009, 4 (2): e4610-10.1371/journal.pone.0004610.
Article
PubMed
PubMed Central
Google Scholar
Dong H, Yauk CL, Williams A, Lee A, Douglas GR, Wade MG: Hepatic gene expression changes in hypothyroid juvenile mice: characterization of a novel negative thyroid-responsive element. Endocrinology. 2007, 148 (8): 3932-3940. 10.1210/en.2007-0452.
Article
CAS
PubMed
Google Scholar
Das B, Heimeier RA, Buchholz DR, Shi YB: Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis. The Journal of biological chemistry. 2009, 284 (49): 34167-34178. 10.1074/jbc.M109.066084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed OM, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM, Ahmed RG: Thyroid hormones states and brain development interactions. Int J Dev Neurosci. 2008, 26 (2): 147-209. 10.1016/j.ijdevneu.2007.09.011.
Article
CAS
PubMed
Google Scholar
Kerr MK, Churchill GA: Statistical design and the analysis of gene expression microarray data. Genetical research. 2001, 77 (2): 123-128.
CAS
PubMed
Google Scholar
Kerr MK: Design considerations for efficient and effective microarray studies. Biometrics. 2003, 59 (4): 822-828. 10.1111/j.0006-341X.2003.00096.x.
Article
PubMed
Google Scholar
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic acids research. 2002, 30 (4): e15-10.1093/nar/30.4.e15.
Article
PubMed
PubMed Central
Google Scholar
Shieh AD, Hung YS: Detecting outlier samples in microarray data. Statistical applications in genetics and molecular biology. 2009, 8 (1): 13-
Article
Google Scholar
Wu H, Kerr MK, Cui X, Churchill GA: The Analysis of Gene Expression Data; MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments. 2003, Springer London
Google Scholar
Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA: Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics (Oxford, England). 2005, 6 (1): 59-75. 10.1093/biostatistics/kxh018.
Article
Google Scholar
Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false discovery rate in behavior genetics research. Behavioural brain research. 2001, 125 (1-2): 279-284. 10.1016/S0166-4328(01)00297-2.
Article
CAS
PubMed
Google Scholar
Searle SR, Speed FM, Milliken GA: The population marginal means in the linear model: An alternative to least squares means. The American Statistician. 1980, 34: 216-221. 10.2307/2684063.
Google Scholar
Goodnight JH, Harvey WR: SAS Technical Report R-103, Least-Squares Means in the Fixed-Effects General Linear Models. 1978, SAS Publishing
Google Scholar
Hashimoto K, Ishida E, Matsumoto S, Okada S, Yamada M, Satoh T, Monden T, Mori M: Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology. 2009, 150 (7): 3417-3424. 10.1210/en.2009-0059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rastinejad F, Perlmann T, Evans RM, Sigler PB: Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature. 1995, 375 (6528): 203-211. 10.1038/375203a0.
Article
CAS
PubMed
Google Scholar
Dong H, Paquette M, Williams AJ, Zoeller RT, Wade MG, Yauk CL: Thyroid hormone may regulate mRNA abundance in liver by acting on microRNAs. PLoS One. 2010, 5 (8): e12136.
Flores-Morales A, Gullberg H, Fernandez L, Stahlberg N, Lee NH, Vennstrom B, Norstedt G: Patterns of liver gene expression governed by TRbeta. Molecular endocrinology. 2002, 16 (6): 1257-1268. 10.1210/me.16.6.1257.
CAS
PubMed
Google Scholar
Yen PM, Feng X, Flamant F, Chen Y, Walker RL, Weiss RE, Chassande O, Samarut J, Refetoff S, Meltzer PS: Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice. EMBO reports. 2003, 4 (6): 581-587. 10.1038/sj.embor.embor862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weitzel JM, Hamann S, Jauk M, Lacey M, Filbry A, Radtke C, Iwen KA, Kutz S, Harneit A, Lizardi PM, et al: Hepatic gene expression patterns in thyroid hormone-treated hypothyroid rats. Journal of molecular endocrinology. 2003, 31 (2): 291-303. 10.1677/jme.0.0310291.
Article
CAS
PubMed
Google Scholar
Bungay A, Selden C, Brown D, Malik R, Hubank M, Hodgson H: Microarray analysis of mitogenic effects of T3 on the rat liver. Journal of gastroenterology and hepatology. 2008, 23 (12): 1926-1933. 10.1111/j.1440-1746.2008.05506.x.
Article
CAS
PubMed
Google Scholar
Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, et al: Genome-wide analysis of estrogen receptor binding sites. Nature genetics. 2006, 38 (11): 1289-1297. 10.1038/ng1901.
Article
CAS
PubMed
Google Scholar
Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, et al: Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005, 122 (1): 33-43. 10.1016/j.cell.2005.05.008.
Article
CAS
PubMed
Google Scholar
Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA: Interchromosomal associations between alternatively expressed loci. Nature. 2005, 435 (7042): 637-645. 10.1038/nature03574.
Article
CAS
PubMed
Google Scholar
Denver RJ, Williamson KE: Identification of a thyroid hormone response element in the mouse Kruppel-like factor 9 gene to explain its postnatal expression in the brain. Endocrinology. 2009
Google Scholar
Farsetti A, Lazar J, Phyillaier M, Lippoldt R, Pontecorvi A, Nikodem VM: Active repression by thyroid hormone receptor splicing variant alpha2 requires specific regulatory elements in the context of native triiodothyronine-regulated gene promoters. Endocrinology. 1997, 138 (11): 4705-4712. 10.1210/en.138.11.4705.
CAS
PubMed
Google Scholar
Farsetti A, Mitsuhashi T, Desvergne B, Robbins J, Nikodem VM: Molecular basis of thyroid hormone regulation of myelin basic protein gene expression in rodent brain. The Journal of biological chemistry. 1991, 266 (34): 23226-23232.
CAS
PubMed
Google Scholar
Bourdeau V, Deschenes J, Metivier R, Nagai Y, Nguyen D, Bretschneider N, Gannon F, White JH, Mader S: Genome-wide identification of high-affinity estrogen response elements in human and mouse. Molecular endocrinology. 2004, 18 (6): 1411-1427. 10.1210/me.2003-0441.
Article
CAS
PubMed
Google Scholar
Umesono K, Murakami KK, Thompson CC, Evans RM: Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991, 65 (7): 1255-1266. 10.1016/0092-8674(91)90020-Y.
Article
CAS
PubMed
Google Scholar
Phan TQ, Jow MM, Privalsky ML: DNA recognition by thyroid hormone and retinoic acid receptors: 3,4,5 rule modified. Molecular and cellular endocrinology. 2010, 319 (1-2): 88-98. 10.1016/j.mce.2009.11.010.
Article
CAS
PubMed
Google Scholar
Forman BM, Casanova J, Raaka BM, Ghysdael J, Samuels HH: Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Molecular endocrinology. 1992, 6 (3): 429-442. 10.1210/me.6.3.429.
CAS
PubMed
Google Scholar
Perlmann T, Rangarajan PN, Umesono K, Evans RM: Determinants for selective RAR and TR recognition of direct repeat HREs. Genes & development. 1993, 7 (7B): 1411-1422. 10.1101/gad.7.7b.1411.
Article
CAS
Google Scholar
Naar AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG: The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell. 1991, 65 (7): 1267-1279. 10.1016/0092-8674(91)90021-P.
Article
CAS
PubMed
Google Scholar
Hashimoto K, Yamada M, Matsumoto S, Monden T, Satoh T, Mori M: Mouse sterol response element binding protein-1c gene expression is negatively regulated by thyroid hormone. Endocrinology. 2006, 147 (9): 4292-4302. 10.1210/en.2006-0116.
Article
CAS
PubMed
Google Scholar
Perez-Juste G, Garcia-Silva S, Aranda A: An element in the region responsible for premature termination of transcription mediates repression of c-myc gene expression by thyroid hormone in neuroblastoma cells. The Journal of biological chemistry. 2000, 275 (2): 1307-1314. 10.1074/jbc.275.2.1307.
Article
CAS
PubMed
Google Scholar
Solanes G, Pedraza N, Calvo V, Vidal-Puig A, Lowell BB, Villarroya F: Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region. The Biochemical journal. 2005, 386 (Pt 3): 505-513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin DJ, Plateroti M, Samarut J, Osborne TF: Two uniquely arranged thyroid hormone response elements in the far upstream 5' flanking region confer direct thyroid hormone regulation to the murine cholesterol 7alpha hydroxylase gene. Nucleic acids research. 2006, 34 (14): 3853-3861. 10.1093/nar/gkl506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis PJ, Leonard JL, Davis FB: Mechanisms of nongenomic actions of thyroid hormone. Frontiers in neuroendocrinology. 2008, 29 (2): 211-218. 10.1016/j.yfrne.2007.09.003.
Article
CAS
PubMed
Google Scholar
Das B, Matsuda H, Fujimoto K, Sun G, Matsuura K, Shi YB: Molecular and genetic studies suggest that thyroid hormone receptor is both necessary and sufficient to mediate the developmental effects of thyroid hormone. General and comparative endocrinology. 2010, 168 (2): 174-180. 10.1016/j.ygcen.2010.01.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haitina T, Lindblom J, Renstrom T, Fredriksson R: Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. Genomics. 2006, 88 (6): 779-790. 10.1016/j.ygeno.2006.06.016.
Article
CAS
PubMed
Google Scholar
Weitzel JM, Iwen KA, Seitz HJ: Regulation of mitochondrial biogenesis by thyroid hormone. Experimental physiology. 2003, 88 (1): 121-128. 10.1113/eph8802506.
Article
CAS
PubMed
Google Scholar
Seipel K, Medley QG, Kedersha NL, Zhang XA, O'Brien SP, Serra-Pages C, Hemler ME, Streuli M: Trio amino-terminal guanine nucleotide exchange factor domain expression promotes actin cytoskeleton reorganization, cell migration and anchorage-independent cell growth. Journal of cell science. 1999, 112 (Pt 12): 1825-1834.
CAS
PubMed
Google Scholar
Biswas SC, Pal U, Sarkar PK: Regulation of cytoskeletal proteins by thyroid hormone during neuronal maturation and differentiation. Brain research. 1997, 757 (2): 245-253. 10.1016/S0006-8993(97)00225-4.
Article
CAS
PubMed
Google Scholar
Ling C, Ishiai M, Ali AM, Medhurst AL, Neveling K, Kalb R, Yan Z, Xue Y, Oostra AB, Auerbach AD, et al: FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. The EMBO journal. 2007, 26 (8): 2104-2114. 10.1038/sj.emboj.7601666.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eyal O, Blum S, Mueller R, Smith FO, Rose SR: Improved growth velocity during thyroid hormone therapy in children with Fanconi anemia and borderline thyroid function. Pediatric blood & cancer. 2008, 51 (5): 652-656. 10.1002/pbc.21673.
Article
Google Scholar
Giri N, Batista DL, Alter BP, Stratakis CA: Endocrine abnormalities in patients with Fanconi anemia. The Journal of clinical endocrinology and metabolism. 2007, 92 (7): 2624-2631. 10.1210/jc.2007-0135.
Article
CAS
PubMed
Google Scholar
Leung JC, Klein C, Friedman J, Vieregge P, Jacobs H, Doheny D, Kamm C, DeLeon D, Pramstaller PP, Penney JB, et al: Novel mutation in the TOR1A (DYT1) gene in atypical early onset dystonia and polymorphisms in dystonia and early onset parkinsonism. Neurogenetics. 2001, 3 (3): 133-143. 10.1007/s100480100111.
Article
CAS
PubMed
Google Scholar
Harrison AP, Tivey DR, Clausen T, Duchamp C, Dauncey MJ: Role of thyroid hormones in early postnatal development of skeletal muscle and its implications for undernutrition. The British journal of nutrition. 1996, 76 (6): 841-855. 10.1079/BJN19960091.
Article
CAS
PubMed
Google Scholar