Burvenich C, Van M, Mehrzad J, ez-Fraile A, Duchateau L: Severity of E. coli mastitis is mainly determined by cow factors. Vet Res. 2003, 34: 521-564. 10.1051/vetres:2003023.
Article
PubMed
Google Scholar
Vangroenweghe F, Lamote I, Burvenich C: Physiology of the periparturient period and its relation to severity of clinical mastitis. Domest Anim Endocrinol. 2005, 29: 283-293. 10.1016/j.domaniend.2005.02.016.
Article
CAS
PubMed
Google Scholar
Gonzalez RN, Cullor JS, Jasper DE, Farver TB, Bushnell RB, Oliver MN: Prevention of clinical coliform mastitis in dairy cows by a mutant Escherichia coli vaccine. Can J Vet Res. 1989, 53: 301-305.
PubMed Central
CAS
PubMed
Google Scholar
Hogan JS, Weiss WP, Smith KL, Todhunter DA, Schoenberger PS, Sordillo LM: Effects of an Escherichia coli J5 vaccine on mild clinical coliform mastitis. J Dairy Sci. 1995, 78: 285-290. 10.3168/jds.S0022-0302(95)76636-X.
Article
CAS
PubMed
Google Scholar
Wilson DJ, Grohn YT, Bennett GJ, Gonzalez RN, Schukken YH, Spatz J: Comparison of J5 vaccinates and controls for incidence, etiologic agent, clinical severity, and survival in the herd following naturally occurring cases of clinical mastitis. J Dairy Sci. 2007, 90: 4282-4288. 10.3168/jds.2007-0160.
Article
CAS
PubMed
Google Scholar
Wilson DJ, Mallard BA, Burton JL, Schukken YH, Grohn YT: Association of Escherichia coli J5-specific serum antibody responses with clinical mastitis outcome for J5 vaccinate and control dairy cattle. Clin Vaccine Immunol. 2009, 16: 209-217. 10.1128/CVI.00324-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilson DJ, Grohn YT, Bennett GJ, González RN, Schukken YH, Spatz J: Milk production change following clinical mastitis and reproductive performance compared among J5 vaccinated and control dairy cattle. J Dairy Sci. 2008, 91: 3869-3879. 10.3168/jds.2008-1405.
Article
CAS
PubMed
Google Scholar
Klostermann K, Crispie F, Flynn J, Ross RP, Hill C, Meaney W: Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials. J Dairy Res. 2008, 75: 365-373.
Article
CAS
PubMed
Google Scholar
Shuster DE, Harmon RJ: Lactating cows become partially refractory to frequent intramammary endotoxin infusions - recovery of milk-yield Despite a persistently high somatic-cell count. Res Vet Sc. 1991, 51: 272-277. 10.1016/0034-5288(91)90077-2.
Article
CAS
Google Scholar
Lohuis JACM, Kremer W, Schukken YH, Smit JAH, Verheijden JHM, Brand A, Van Miert ASJP: Growth of Escherichia coli in milk from endotoxin-induced mastitic quarters and the course of subsequent experimental Escherichia coli mastitis in the cow. J Dairy Sci. 1990, 73: 1508-1514. 10.3168/jds.S0022-0302(90)78818-2.
Article
CAS
PubMed
Google Scholar
Foster SL, Hargreaves DC, Medzhitov R: Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007, 447: 972-978.
CAS
PubMed
Google Scholar
Ziegler-Heitbrock L: The p50-homodimer mechanism in tolerance to LPS. J Endotoxin Res. 2001, 7: 219-222.
Article
CAS
PubMed
Google Scholar
Biswas SK, Lopez-Collazo E: Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009, 30: 475-487. 10.1016/j.it.2009.07.009.
Article
CAS
PubMed
Google Scholar
del Fresno C, García-Rio F, Gómez-Piña V, Soares-Schanoski A, Fernández-Ruíz I, Jurado T, Kajiji T, Shu C, Marín E, Gutierrez del Arroyo A, Prados C, Arnalich F, Fuentes-Prior P, Biswas SK, López-Collazo E: Potent phagocytic activity with impaired antigen presentation identifying lipopolysaccharide-tolerant human monocytes: demonstration in isolated monocytes from cystic fibrosis patients. J Immunol. 2009, 182: 6494-6507. 10.4049/jimmunol.0803350.
Article
CAS
PubMed
Google Scholar
Monneret G, Finck ME, Venet F, Debard AL, Bohé J, Bienvenu J, Lepape A: The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol Lett. 2004, 95: 193-198. 10.1016/j.imlet.2004.07.009.
Article
CAS
PubMed
Google Scholar
Strandberg Y, Gray C, Vuocolo T, Donaldson L, Broadway M, Tellam R: Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine. 2005, 31: 72-86. 10.1016/j.cyto.2005.02.010.
Article
CAS
PubMed
Google Scholar
Günther J, Koczan D, Yang W, Nürnberg G, Repsilber D, Schuberth HJ, Park Z, Maqbool N, Molenaar A, Seyfert HM: Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet Res. 2009, 40: 31-10.1051/vetres/2009014.
Article
PubMed Central
PubMed
Google Scholar
Yang W, Molenaar AJ, Kurts-Ebert B, Seyfert HM: NF-κB factors are essential, but not the switch, for pathogen-related induction of the bovine β-defensin 5-encoding gene in mammary epithelial cells. Mol Immunol. 2006, 43: 210-225. 10.1016/j.molimm.2005.02.003.
Article
CAS
PubMed
Google Scholar
Petzl W, Zerbe H, Günther J, Yang W, Seyfert HM, Nürnberg G, Schuberth HJ: Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate immune defense in the udder of the cow. Vet Res. 2008, 39: 18-10.1051/vetres:2007057.
Article
PubMed
Google Scholar
Gray C, Strandberg Y, Donaldson L, Tellam RL: Bovine mammary epithelial cells, initiators of innate immune response to mastitis. Aust J Exp Agr. 2005, 45: 757-761. 10.1071/EA05046.
Article
CAS
Google Scholar
Lahouassa H, Moussay E, Rainard P, Riollet C: Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine. 2007, 38: 12-21. 10.1016/j.cyto.2007.04.006.
Article
CAS
PubMed
Google Scholar
Günther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, Blum H, Seyfert HM: Comparative kinetics of Escherichia coli- and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha. Infect Immun. 2011, 79: 695-707. 10.1128/IAI.01071-10.
Article
PubMed Central
PubMed
Google Scholar
Petzl W, Günther J, Pfister T, Sauter-Louis C, Goetze L, von Aulock S, Hafner-Marx A, Schuberth HJ, Seyfert HM, Zerbe H: Lipopolysaccharide infusion into the udder reduces the inflammatory response and the bacterial load after consecutive E. coli challenge . Innate Immun. 10.1177/1753425911422407.
Tripathi A, King C, de la Morenas A, Perry VK, Burke B, Antoine GA, Hirsch EF, Kavanah M, Mendez J, Stone M, Gerry NP, Lenburg ME, Rosenberg CL: Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients. Int J Cancer. 2008, 122: 1557-1566.
Article
CAS
PubMed
Google Scholar
Lin SC, Lo YC, Wu H: Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010, 465: 885-890. 10.1038/nature09121.
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Neill LAJ, Bowie AG: The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007, 7: 353-364. 10.1038/nri2079.
Article
PubMed
Google Scholar
Günther J, Liu S, Esch K, Schuberth HJ, Seyfert HM: Stimulated expression of TNF-α and IL-8, but not of Lingual antimicrobial peptide reflects the concentration of pathogens contacting bovine Mammary Epithelial Cells. Vet Immunol Immunopathol. 2010, 135: 152-157. 10.1016/j.vetimm.2009.11.004.
Article
PubMed
Google Scholar
Yang W, Zerbe H, Petzl W, Brunner RM, Günther J, Draing C, von Aulock S, Schuberth HJ, Seyfert HM: Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-κB in mammary epithelial cells and to quickly induce TNF-α and interleukin-8 (CXCL8) expression in the udder. Mol Immunol. 2008, 45: 1385-1397. 10.1016/j.molimm.2007.09.004.
Article
CAS
PubMed
Google Scholar
Gouwy M, Struyf S, Berghmans N, Vanormelingen C, Schols D, Van Damme J: CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dual-tropic (R5/X4) HIV-1 infection. Eur J Immunol. 2011, 41: 963-973. 10.1002/eji.201041178.
Article
CAS
PubMed
Google Scholar
Carman CV, Springer TA: A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol. 2004, 167: 377-388. 10.1083/jcb.200404129.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gereke M, Jung S, Buer J, Bruder D: Alveolar type II epithelial cells present antigen to CD4+ T cells and induce Foxp3+ regulatory T cells. Am J Respir Crit Care Med. 2009, 179: 344-355. 10.1164/rccm.200804-592OC.
Article
PubMed
Google Scholar
Liu S, Shi X, Bauer I, Günther J, Seyfert HM: Lingual antimicrobial peptide and IL-8 expression are oppositely regulated by the antagonistic effects of NF-κB p65 and C/EBPβ in mammary epithelial cells. Mol Immunol. 2011, 48: 895-908. 10.1016/j.molimm.2010.12.018.
Article
CAS
PubMed
Google Scholar
The Bovine Genome Sequencing and Analysis Consortium, Elsik CG, Tellam RL, Worley KC: The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009, 324: 522-528.
Article
PubMed Central
Google Scholar
Swanson K, Gorodetsky S, Good L, Davis S, Musgrave D, Stelwagen K, Farr V, Molenaar A: Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect Immun. 2004, 72: 7311-7314. 10.1128/IAI.72.12.7311-7314.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wiesner J, Vilcinskas A: Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010, 1: 440-464. 10.4161/viru.1.5.12983.
Article
PubMed
Google Scholar
Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD, Ding A: Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell. 2002, 111: 867-878. 10.1016/S0092-8674(02)01141-8.
Article
CAS
PubMed
Google Scholar
Actor JK, Hwang SA, Kruzel ML: Lactoferrin as a natural immune modulator. Curr Pharm Des. 2009, 15: 1956-1973. 10.2174/138161209788453202.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kruzel ML, Harari Y, Chen CY, Castro GA: Lactoferrin protects gut mucosal integrity during endotoxemia induced by lipopolysaccharide in mice. Inflammation. 2000, 24: 33-44. 10.1023/A:1006935908960.
Article
CAS
PubMed
Google Scholar
Taylor-Papadimitriou J, Burchell JM, Plunkett T, Graham R, Correa I, Miles D, Smith M: MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia. 2002, 7: 209-221. 10.1023/A:1020360121451.
Article
PubMed
Google Scholar
Li X, Wang L, Nunes DP, Troxler RF, Offner GD: Pro-inflammatory cytokines up-regulate MUC1 gene expression in oral epithelial cells. J Dent Res. 2003, 82: 883-887. 10.1177/154405910308201107.
Article
CAS
PubMed
Google Scholar
Elli L, Bergamini CM, Bardella MT, Schuppan D: Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver. Dig Liver Dis. 2009, 41: 541-550. 10.1016/j.dld.2008.12.095.
Article
CAS
PubMed
Google Scholar
Dinarello CA: Proinflammatory Cytokines. Chest. 2000, 118: 503-508. 10.1378/chest.118.2.503.
Article
CAS
PubMed
Google Scholar
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003, 374: 1-20. 10.1042/BJ20030407.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanigawa K, Suzuki K, Kimura H, Takeshita F, Wu H, Akama T, Kawashima A, Ishii N: Tryptophan aspartate-containing coat protein (CORO1A) suppresses Toll-like receptor signalling in Mycobacterium leprae infection. Clin Exp Immunol. 2009, 156: 495-501. 10.1111/j.1365-2249.2009.03930.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weldon S, Taggart CC: Innate host defense functions of secretory leucoprotease inhibitor. Exp Lung Res. 2007, 33: 485-491. 10.1080/01902140701756547.
Article
CAS
PubMed
Google Scholar
Ding A, Thieblemont N, Zhu J, Jin F, Zhang J, Wright S: Secretory leukocyte protease inhibitor interferes with uptake of lipopolysaccharide by macrophages. Infect Immun. 1999, 67: 4485-4489.
PubMed Central
CAS
PubMed
Google Scholar
Jin Fy, Nathan C, Radzioch D, Ding A: Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell. 1997, 88: 417-426. 10.1016/S0092-8674(00)81880-2.
Article
CAS
PubMed
Google Scholar
Zhang Y, DeWitt DL, McNeely TB, Wahl SM, Wahl LM: Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinases. J Clin Invest. 1997, 99: 894-900. 10.1172/JCI119254.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morath S, Geyer A, Hartung T: Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med. 2001, 193: 393-398. 10.1084/jem.193.3.393.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ: Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol. 2000, 165: 618-622.
Article
CAS
PubMed
Google Scholar
Wu ZJ, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc. 2004, 99: 909-917. 10.1198/016214504000000683.
Article
Google Scholar
Hintermair V: Comparative analysis of Bos taurus and Homo sapiens DNA microarrays. Master thesis. 2007, Ludwig Maximilians University, Munich, Germany
Google Scholar
Pavlidis P, Noble WS: Matrix2png: a utility for visualizing matrix data. Bioinformatics. 2003, 19: 295-6. 10.1093/bioinformatics/19.2.295.
Article
CAS
PubMed
Google Scholar
Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, Seyfert HM: Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diag Lab Immunol. 2004, 11: 174-185.
CAS
Google Scholar