White NJ: Melioidosis. Lancet. 2003, 361: 1715-1722. 10.1016/S0140-6736(03)13374-0.
Article
CAS
PubMed
Google Scholar
Brett PJ, Woods DE: Pathogenesis of and immunity to melioidosis. Acta Trop. 2000, 74: 201-210. 10.1016/S0001-706X(99)00071-6.
Article
CAS
PubMed
Google Scholar
Cheng AC, Currie BJ: Melioidosis: epidemiology, pathophysiology, and management. ClinMicrobiol Rev. 2005, 18 (2): 383-416.
CAS
Google Scholar
Currie BJ, Fisher DA, Anstey NM, Jacups SP: Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg. 2000, 94: 301-304. 10.1016/S0035-9203(00)90333-X.
Article
CAS
PubMed
Google Scholar
Jenney AW, Lum G, Fisher DA, Currie BJ: Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int J Antimicrob Agents. 2001, 17 (2): 109-113. 10.1016/S0924-8579(00)00334-4.
Article
CAS
PubMed
Google Scholar
Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ: Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol. 2006, 4 (4): 272-282. 10.1038/nrmicro1385.
Article
CAS
PubMed
Google Scholar
Harley VS, Dance DAB, Tovey G, McCrossan MV, Drasar BS: An ultrastructural study of the phagocytosis of Burkholderia pseudomallei. Microbios. 1998, 94: 35-45.
CAS
PubMed
Google Scholar
Jones AL, Beveridge TJ, Woods DE: Intracellular survival of Burkholderia pseudomallei. Infect Immun. 1996, 64 (3): 782-790.
PubMed Central
CAS
PubMed
Google Scholar
Inglis TJJ, Rigby P, Robertson TA, Dutton NS, Henderson M, Chang BJ: Interaction between Burkholderia pseudomallei and Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape. Infect Immun. 2000, 68 (3): 1681-1686. 10.1128/IAI.68.3.1681-1686.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stevens MP, Friebel A, Taylor LA, Wood MW, Brown PJ, Hardt WD, Galyov EE: A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J Bacteriol. 2003, 185 (16): 4992-4996. 10.1128/JB.185.16.4992-4996.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kespichayawattana W, Rattanachetkul S, Wanun T, Utaisincharoen P, Sirisinha S: Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun. 2000, 68 (9): 5377-5384. 10.1128/IAI.68.9.5377-5384.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stevens MP, Galyov EE: Exploitation of host cells by Burkholderia pseudomallei. Int J Med Microbiol. 2004, 293: 549-555. 10.1078/1438-4221-00292.
Article
CAS
PubMed
Google Scholar
Stevens MP, Wood MW, Taylor LA, Monaghan P, Hawes P, Jones PW, Wallis TS, Gaylov EE: An Inv/Mxi-Spa like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol. 2002, 46 (9): 649-659.
Article
CAS
PubMed
Google Scholar
Suparak S, Kespichayawattana W, Haque A, Easton A, Damnin S, Lertmemongkolchai G, Bancroft GJ, Korbsrisate S: Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol. 2005, 187 (18): 6556-6560. 10.1128/JB.187.18.6556-6560.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen Y, Wong J, Sun GW, Liu Y, Tan GG, Gan Y: Regulation of type VI secretion system during Burkholderia pseudomallei infection. Infect Immun. 2011, 79 (8): 3064-3073. 10.1128/IAI.05148-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma AT, McAuley S, Pukatzki S, Mekalanos JJ: Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe. 2009, 5 (3): 234-243. 10.1016/j.chom.2009.02.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ: A virulence locus ofPseudomonas aeruginosaencodes a protein secretion apparatus. Science. 2006, 312: 1526-1530. 10.1126/science.1128393.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shalom G, Shaw JG, Thomas MS: In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 2007, 153: 2689-2699. 10.1099/mic.0.2007/006585-0.
Article
CAS
PubMed
Google Scholar
Pilatz S, Breitbach K, Hein N, Fehlhaber B, Schulze J, Brenneke B, Eberl L, Steinmetz I: Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 2006, 74 (6): 3576-3586. 10.1128/IAI.01262-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Holden MTG, Titball RW, Peacock SJ, Cerdeño-Tárraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PCF, Parkhill J: Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA. 2004, 101 (39): 14240-14245. 10.1073/pnas.0403302101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun GW, Lu J, Pervaiz S, Cao WP, Gan YH: Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol. 2005, 7 (10): 1447-1458. 10.1111/j.1462-5822.2005.00569.x.
Article
CAS
PubMed
Google Scholar
Harley VS, Dance DAB, Drasar BS, Tovey G: Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios. 1998, 96: 71-93.
CAS
PubMed
Google Scholar
Waddell SJ, Burcher PD, Stoker NG: RNA profiling in host-pathogen interactions. Curr Opin Microbiol. 2007, 10: 297-302. 10.1016/j.mib.2007.05.013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Du Y, Lenz J, Arvidson CG: Global gene expression and the role of sigma factors in Neisseria gonorrhoeae in interactions with epithelial cells. Infect Immun. 2005, 73 (8): 4834-4845. 10.1128/IAI.73.8.4834-4845.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grifantini R, Bartolini E, Muzzi A, Draghi M, Fringimelica E, Berger J, Ratti G, Petracca R, Galli G, Agnusdei M, Giuliani MM, Santini L, Brunelli B, Tettelin H, Rappuoli R, Randazzo F, Grandi G: Previously unrecognised vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol. 2002, 20: 914-921. 10.1038/nbt728.
Article
CAS
PubMed
Google Scholar
Trijbels F, Vogels GD: Allantoicase and ureidoglycolase in Pseudomonas and Penicillium species. BiochimBipphysActa. 1966, 118 (2): 387-395.
CAS
Google Scholar
Sun GW, Chen Y, Liu Y, Tan GYG, Ong C, Tan P, Gan YH: Identification of a regulatory cascade controlling type III secretion system 3 gene expression in Burkholderia pseudomallei. Mol Microbiol. 2010, 76 (3): 677-689. 10.1111/j.1365-2958.2010.07124.x.
Article
CAS
PubMed
Google Scholar
Subsin B, Thomas MS, Katzenmeier G, Shaw JG, Tungpradabkul S, Kunakorn M: Role of the stationary growth phase sigma factor RpoS of Burkholderia pseudomallei in response to physiological stress conditions. J Bacteriol. 2003, 185 (23): 7008-7014. 10.1128/JB.185.23.7008-7014.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jangiam W, Loprasert S, Tungpradabkul S: Role of Burkholderia pseudomallei RpoS in regulation of catalase activities under hydrogen peroxide induction. Science Asia. 2008, 34 (1): 23-29. 10.2306/scienceasia1513-1874.2008.34.023.
Article
CAS
Google Scholar
Dorman CJ: DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun. 1991, 59 (3): 745-749.
PubMed Central
CAS
PubMed
Google Scholar
Drlica K: Control of bacterial DNA supercoiling. Mol Microbiol. 1992, 6 (4): 425-433. 10.1111/j.1365-2958.1992.tb01486.x.
Article
CAS
PubMed
Google Scholar
Schneider R, Travers A: The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA. Mol Microbiol. 2000, 38 (1): 167-175. 10.1046/j.1365-2958.2000.02129.x.
Article
CAS
PubMed
Google Scholar
Rothfield LI, Shih YL, King G: Polar explorers: membrane proteins that determine division site placement. Cell. 2001, 106 (1): 13-16. 10.1016/S0092-8674(01)00432-9.
Article
CAS
PubMed
Google Scholar
Wand ME, Muller CM, Titball RW, Michell SL: Macrophage and Galleria mellonela infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol. 2011, 11: 11-10.1186/1471-2180-11-11.
Article
PubMed Central
PubMed
Google Scholar
Tuanyok A, Tom M, Dunbar J, Woods DE: Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun. 2006, 74 (10): 5465-5476. 10.1128/IAI.00737-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boyce JD, Wilkie I, Harper M, Paustian ML, Kapur V, Adler B: Genomic scale analysis of Pasteurella multocida gene expression during growth within natural chicken host. Infect Immun. 2002, 70 (12): 6871-6879. 10.1128/IAI.70.12.6871-6879.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lucchini S, Liu H, Jin Q, Hinton JCD, Yu J: Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun. 2005, 73 (1): 88-102. 10.1128/IAI.73.1.88-102.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T: Intracellular gene expression profile of Listeria monocytogenes. Infect Immun. 2006, 74 (2): 1323-1338. 10.1128/IAI.74.2.1323-1338.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pahan K, Sheikh FG, Namboodiri AM, Singh I: Lovastatin and phenyl acetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Investig. 1997, 100: 2671-2679. 10.1172/JCI119812.
Article
PubMed Central
CAS
PubMed
Google Scholar
Park JS, Lee EJ, Lee JC, Kim WK, Kim HS: Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int Immunopharmacol. 2007, 7: 70-77. 10.1016/j.intimp.2006.08.015.
Article
CAS
PubMed
Google Scholar
Utaisincharoen P, Tangthawornchaikul N, Kespichayawattana W, Chaisuriya P, Sirisinha S: Burkholderia pseudomallei interferes with inducible nitric oxide synthase (iNOS) production: a possible mechanism of evading macrophage killing. Microbiol Immunol. 2001, 45 (4): 307-313.
Article
CAS
PubMed
Google Scholar
Law RJ, Hamlin JNR, Sivro A, McCorrister SJ, Cardama GA, Cardona ST: A functional phenylacetic acid catabolic pathway is required for full pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans host model. J Bacteriol. 2008, 190 (21): 7209-7218. 10.1128/JB.00481-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Warawa J, Woods DE: Type III secretion system cluster 3 is required for maximum virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett. 2005, 242: 101-108. 10.1016/j.femsle.2004.10.045.
Article
CAS
PubMed
Google Scholar
Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrázek J, Nierman WC, Deshazer D: Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 2007, 64 (6): 1466-1485. 10.1111/j.1365-2958.2007.05734.x.
Article
CAS
PubMed
Google Scholar
Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, Scorpio A, Milne TS, Dean RE, Fritz DL, Peacock SJ, Prior JL, Atkins TP, DeShazer D: The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 2011, 79 (4): 1512-1525. 10.1128/IAI.01218-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stevens MP, Stevens JM, Jeng RL, Taylor LA, Wood MW, Hawes P, Monaghan P, Welch MD, Galyov EE: Identification of a bacterial factor required for actin-based motilityof Burkholderia pseudomallei. Mol Microbiol. 2005, 56 (1): 40-53. 10.1111/j.1365-2958.2004.04528.x.
Article
CAS
PubMed
Google Scholar
Jacob-Dubuisson F, Buisine C, Mielcarek N, Clément E, Menozzi FD, Locht C: Amino-terminal maturation of the Bordetella pertussis filamentous hemagglutinin. Mol Microbiol. 1996, 19 (1): 65-78. 10.1046/j.1365-2958.1996.349883.x.
Article
CAS
PubMed
Google Scholar
Abramson T, Kedem H, Relman DA: Proinflammatory and proapoptotic activities associated with Bordetella pertussis filamentous hemagglutinin. Infect Immun. 2001, 69 (4): 2650-2658. 10.1128/IAI.69.4.2650-2658.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dowling AJ, Wilkinson PA, Holden MT, Quail MA, Bentley SD, Reger J, Waterfield NR, Titball RW, Ffrench-Constant RH: Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243. PLoS One. 2011, 5 (12): e15693-
Article
Google Scholar
Tolman JS, Valvano MA: Global changes in gene expression by the opportunistic pathogen Burkholderia cenocepacia in response to internalization by murine macrophages. BMC Genomics. 2012, 13: 63-10.1186/1471-2164-13-63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hayashi F, Smith KD, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A: The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001, 410: 1099-1103. 10.1038/35074106.
Article
CAS
PubMed
Google Scholar
Feterl M, Govan BL, Ketheesan N: The effect of different Burkholderia pseudomallei isolates of varying levels of virulence on toll-like-receptor expression. Trans R Soc Trop Med Hyg. 2008, 102 (Suppl 1): S82-S88.
Article
PubMed
Google Scholar
Chin CY, Monack DM, Nathan S: Genome wide transcriptome profiling of a murine acute melioidosis model reveals new insights into how Burkholderia pseudomallei overcomes host innate immunity. BMC Genomics. 2010, 11: 672-10.1186/1471-2164-11-672.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nanagara R, Vipulakorn K, Suwannaroj S, Schumacher HRJ: Atypical morphological characteristics and surface antigen expression of Burkholderia pseudomallei in naturally infected human synovial tissues. Mod Rheumatol. 2000, 10: 129-136. 10.1007/s101650070019.
Article
CAS
PubMed
Google Scholar
Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S: DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol. 2004, 182 (1): 96-101. 10.1007/s00203-004-0694-0.
Article
CAS
PubMed
Google Scholar
Loprasert S, Sallabhan R, Whangsuk W, Mongkolsuk S: Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. Arch Microbiol. 2003, 180 (6): 498-502. 10.1007/s00203-003-0621-9.
Article
CAS
PubMed
Google Scholar
Lee SH, Chong CE, Lim BS, Chai SJ, Sam KK, Mohamed R, Nathan S: Burkholderia pseudomallei animal and human isolates from Malaysia exhibit different phenotypic characteristics. Diagn Microbiol Infect Dis. 2007, 58 (3): 263-270. 10.1016/j.diagmicrobio.2007.01.002.
Article
CAS
PubMed
Google Scholar
Abu Kwaik Y, Eisenstein BI, Engleberg NC: Phenotypic modulation by Legionella pneumophila upon infection of macrophages. Infect Immun. 1993, 61 (4): 1320-1329.
PubMed Central
CAS
PubMed
Google Scholar
Bergman NH, Anderson EC, Swenson EE, Janes BK, Fisher N, Niemeyer MM, Miyoshi AD, Hanna PC: Transcriptional profiling of Bacillus anthracis during infection of host macrophages. Infect Immun. 2007, 75 (7): 3434-3444. 10.1128/IAI.01345-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4 (5): P3-10.1186/gb-2003-4-5-p3.
Article
PubMed
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30 (9): e36-10.1093/nar/30.9.e36.
Article
PubMed Central
PubMed
Google Scholar