Voisine C, Pedersen JS, Morimoto RI: Chaperone networks: Tipping the balance in protein folding diseases. Neurobiol Dis. 2010, 40 (1): 12-20. 10.1016/j.nbd.2010.05.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gandhi S, Wood NW: Genome-wide association studies: the key to unlocking neurodegeneration?. Nat Neurosci. 2010, 13 (7): 789-794. 10.1038/nn.2584.
Article
CAS
PubMed
Google Scholar
Kearney JA: Genetic modifiers of neurological disease. Current Opinion in Genetics & Development. 2011, 21 (3): 349-353. 10.1016/j.gde.2010.12.007.
Article
CAS
Google Scholar
Brignull HR, Morley JF, Morimoto RI: The stress of misfolded proteins: C. elegans models for neurodegenerative disease and aging. Adv Exp Med Biol. 2007, 594: 167-189. 10.1007/978-0-387-39975-1_15.
Article
PubMed
Google Scholar
Teschendorf D, Link C: What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases?. Mol Neurodegener. 2009, 4 (1): 1-13. 10.1186/1750-1326-4-1.
Article
Google Scholar
Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA: C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev Dyn. 2010, 239 (5): 1282-1295.
CAS
PubMed
Google Scholar
Link CD: Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA. 1995, 92 (20): 9368-9372. 10.1073/pnas.92.20.9368.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S, Iwatsubo T: Familial Parkinson Mutant α-Synuclein Causes Dopamine Neuron Dysfunction in Transgenic Caenorhabditis elegans. J Biol Chem. 2006, 281 (1): 334-340.
Article
CAS
PubMed
Google Scholar
van Ham TJ, Thijssen KL, Breitling R, Hofstra RMW, Plasterk RHA, Nollen EAA: C. elegans Model Identifies Genetic Modifiers of α-Synuclein Inclusion Formation During Aging. PLoS Genet. 2008, 4 (3): e1000027-10.1371/journal.pgen.1000027.
Article
PubMed Central
PubMed
Google Scholar
Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, Plasterk RH: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA. 2004, 101 (17): 6403-6408. 10.1073/pnas.0307697101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang J, Farr GW, Hall DH, Li F, Furtak K, Dreier L, Horwich AL: An ALS-Linked Mutant SOD1 Produces a Locomotor Defect Associated with Aggregation and Synaptic Dysfunction When Expressed in Neurons of Caenorhabditis elegans. PLoS Genet. 2009, 5 (1): e1000350-10.1371/journal.pgen.1000350.
Article
PubMed Central
PubMed
Google Scholar
Faber PW, Voisine C, King DC, Bates EA, Hart AC: Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci USA. 2002, 99 (26): 17131-17136. 10.1073/pnas.262544899.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parker JA, Metzler M, Georgiou J, Mage M, Roder JC, Rose AM, Hayden MR, Neri C: Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci. 2007, 27 (41): 11056-11064. 10.1523/JNEUROSCI.1941-07.2007.
Article
CAS
PubMed
Google Scholar
Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD: Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet. 2006, 15 (9): 1483-1496. 10.1093/hmg/ddl067.
Article
CAS
PubMed
Google Scholar
Rubinsztein D: Functional genomics approaches to neurodegenerative diseases. Mammalian Genome. 2008, 19 (9): 587-590. 10.1007/s00335-008-9130-0.
Article
CAS
PubMed
Google Scholar
Lessing D, Bonini NM: Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat Rev Genet. 2009, 10 (6): 359-370. 10.1038/nrg2563.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Ham TJ, Breitling R, Swertz MA, Nollen EAA: Neurodegenerative diseases: Lessons from genome-wide screens in small model organisms. EMBO Molecular Medicine. 2009, 1 (8-9): 360-370.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moloney A, Sattelle DB, Lomas DA, Crowther DC: Alzheimer's disease: insights from Drosophila melanogaster models. Trends in biochemical sciences. 2010, 35 (4): 228-235. 10.1016/j.tibs.2009.11.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Johnson JR, Jenn RC, Barclay JW, Burgoyne RD, Morgan A: Caenorhabditis elegans: a useful tool to decipher neurodegenerative pathways. Biochem Soc Trans. 2010, 38 (2): 559-563. 10.1042/BST0380559.
Article
CAS
PubMed
Google Scholar
Mallik M, Lakhotia SC: Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. J Genet. 2010, 89 (4): 497-526. 10.1007/s12041-010-0072-4.
Article
CAS
PubMed
Google Scholar
Doumanis J, Wada K, Kino Y, Moore AW, Nukina N: RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation. PLoS ONE. 2009, 4 (9): e7275-10.1371/journal.pone.0007275.
Article
PubMed Central
PubMed
Google Scholar
Zhang S, Binari R, Zhou R, Perrimon N: A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics. 2010, 184 (4): 1165-1179. 10.1534/genetics.109.112516.
Article
PubMed Central
CAS
PubMed
Google Scholar
Teuling E, Bourgonje A, Veenje S, Thijssen K, de Boer J, van der Velde J, Swertz M, Nollen E: Modifiers of mutant huntingtin aggregation: functional conservation of C. elegans-modifiers of polyglutamine aggregation. PLoS Curr. 2011, 3: RRN1255-
Article
PubMed Central
PubMed
Google Scholar
Willingham S, Outeiro TF, DeVit MJ, Lindquist SL, Muchowski PJ: Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or α-Synuclein. Science. 2003, 302 (5651): 1769-1772. 10.1126/science.1090389.
Article
CAS
PubMed
Google Scholar
Schulte J, Sepp KJ, Wu C, Hong P, Littleton JT: High-content chemical and RNAi screens for suppressors of neurotoxicity in a Huntington's disease model. PLoS ONE. 2011, 6 (8): e23841-10.1371/journal.pone.0023841.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heinicke S, Livstone MS, Lu C, Oughtred R, Kang F, Angiuoli SV, White O, Botstein D, Dolinski K: The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists. PLoS ONE. 2007, 2 (8): e766-10.1371/journal.pone.0000766.
Article
PubMed Central
PubMed
Google Scholar
Hartl FU, Bracher A, Hayer-Hartl M: Molecular chaperones in protein folding and proteostasis. Nature. 2011, 475 (7356): 324-332. 10.1038/nature10317.
Article
CAS
PubMed
Google Scholar
Soss SE, Yue Y, Dhe-Paganon S, Chazin WJ: E2 conjugating enzyme selectivity and requirements for function of the E3 ubiquitin ligase CHIP. J Biol Chem. 2011, 286 (24): 21277-21286. 10.1074/jbc.M111.224006.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Wijk SJ, de Vries SJ, Kemmeren P, Huang A, Boelens R, Bonvin AM, Timmers HT: A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol. 2009, 5: 295-
Article
PubMed Central
PubMed
Google Scholar
Hatakeyama S, Matsumoto M, Yada M, Nakayama KI: Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones. Genes Cells. 2004, 9 (6): 533-548. 10.1111/j.1356-9597.2004.00742.x.
Article
CAS
PubMed
Google Scholar
Kalia LV, Kalia SK, Chau H, Lozano AM, Hyman BT, McLean PJ: Ubiquitinylation of alpha-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS ONE. 2011, 6 (2): e14695-10.1371/journal.pone.0014695.
Article
PubMed Central
CAS
PubMed
Google Scholar
Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, Branco J, de Haro M, Patterson C, Zoghbi HY, et al: CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem. 2006, 281 (36): 26714-26724. 10.1074/jbc.M601603200.
Article
CAS
PubMed
Google Scholar
Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI, Takahashi R: CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell. 2002, 10 (1): 55-67. 10.1016/S1097-2765(02)00583-X.
Article
CAS
PubMed
Google Scholar
Branco J, Al-Ramahi I, Ukani L, Perez AM, Fernandez-Funez P, Rincon-Limas D, Botas J: Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Hum Mol Genet. 2008, 17 (3): 376-390.
Article
CAS
PubMed
Google Scholar
Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, et al: A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997, 387 (6628): 43-48. 10.1038/387043a0.
Article
CAS
PubMed
Google Scholar
Alland L, Muhle R, Hou H, Potes J, Chin L, Schreiber-Agus N, DePinho RA: Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature. 1997, 387 (6628): 49-55. 10.1038/387049a0.
Article
CAS
PubMed
Google Scholar
Bates EA, Victor M, Jones AK, Shi Y, Hart AC: Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci. 2006, 26 (10): 2830-2838. 10.1523/JNEUROSCI.3344-05.2006.
Article
CAS
PubMed
Google Scholar
Tissenbaum HA, Guarente L: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001, 410 (6825): 227-230. 10.1038/35065638.
Article
CAS
PubMed
Google Scholar
Wang Y, Tissenbaum HA: Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev. 2006, 127 (1): 48-56. 10.1016/j.mad.2005.09.005.
Article
CAS
PubMed
Google Scholar
Mair W, Dillin A: Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem. 2008, 77: 727-754. 10.1146/annurev.biochem.77.061206.171059.
Article
CAS
PubMed
Google Scholar
Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, et al: Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011, 477 (7365): 482-485. 10.1038/nature10296.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jadiya P, Chatterjee M, Sammi SR, Kaur S, Palit G, Nazir A: Sir-2.1 modulates 'calorie-restriction-mediated' prevention of neurodegeneration in Caenorhabditis elegans: Implications for Parkinson's disease. Biochem Biophys Res Commun. 2011
Google Scholar
D'Mello SR: Histone deacetylases as targets for the treatment of human neurodegenerative diseases. Drug News Perspect. 2009, 22 (9): 513-524. 10.1358/dnp.2009.22.9.1437959.
Article
PubMed Central
PubMed
Google Scholar
Herranz D, Serrano M: SIRT1: recent lessons from mouse models. Nat Rev Cancer. 2010, 10 (12): 819-823. 10.1038/nrc2962.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dietz KC, Casaccia P: HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res. 2010, 62 (1): 11-17. 10.1016/j.phrs.2010.01.011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yacoubian TA, Slone SR, Harrington AJ, Hamamichi S, Schieltz JM, Caldwell KA, Caldwell GA, Standaert DG: Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease. Cell Death Dis. 2010, 1: e2-10.1038/cddis.2009.4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ, Tissenbaum HA: C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev. 2006, 127 (9): 741-747. 10.1016/j.mad.2006.05.005.
Article
CAS
PubMed
Google Scholar
Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L: C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell. 2006, 125 (6): 1165-1177. 10.1016/j.cell.2006.04.036.
Article
CAS
PubMed
Google Scholar
Slone SR, Lesort M, Yacoubian TA: 14-3-3theta protects against neurotoxicity in a cellular Parkinson's disease model through inhibition of the apoptotic factor Bax. PLoS ONE. 2011, 6 (7): e21720-10.1371/journal.pone.0021720.
Article
PubMed Central
CAS
PubMed
Google Scholar
Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ: A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nature genetics. 2005, 37 (5): 526-531. 10.1038/ng1542.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, et al: Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell. 2011, 145 (6): 863-874. 10.1016/j.cell.2011.05.020.
Article
PubMed Central
CAS
PubMed
Google Scholar
Campesan S, Green EW, Breda C, Sathyasaikumar KV, Muchowski PJ, Schwarcz R, Kyriacou CP, Giorgini F: The Kynurenine Pathway Modulates Neurodegeneration in a Drosophila Model of Huntington's Disease. Curr Biol. 2011, 21 (11): 961-966. 10.1016/j.cub.2011.04.028.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rubinsztein DC, Marino G, Kroemer G: Autophagy and aging. Cell. 2011, 146 (5): 682-695. 10.1016/j.cell.2011.07.030.
Article
CAS
PubMed
Google Scholar
Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, et al: alpha-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol. 2010, 190 (6): 1023-1037. 10.1083/jcb.201003122.
Article
PubMed Central
CAS
PubMed
Google Scholar
Winslow AR, Rubinsztein DC: Autophagy in neurodegeneration and development. Biochim Biophys Acta. 2008, 1782 (12): 723-729.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong E, Cuervo AM: Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010, 13 (7): 805-811. 10.1038/nn.2575.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008, 105 (9): 3374-3379. 10.1073/pnas.0712145105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, et al: Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science. 2006, 313 (5785): 324-328. 10.1126/science.1129462.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, Caldwell KA, Caldwell GA, Cooper AA, Rochet J-C, et al: [alpha]-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature genetics. 2009, 41 (3): 308-315. 10.1038/ng.300.
Article
PubMed Central
CAS
PubMed
Google Scholar
Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS, et al: Functional Links Between Abeta Toxicity, Endocytic Trafficking, and Alzheimer's Disease Risk Factors in Yeast. Science. 2011, 334 (6060): 1241-1245. 10.1126/science.1213210.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, et al: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009, 41 (10): 1088-1093. 10.1038/ng.440.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, et al: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2009, 41 (10): 1094-1099. 10.1038/ng.439.
Article
CAS
PubMed
Google Scholar
Bilen J, Bonini NM: Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet. 2007, 3 (10): 1950-1964.
Article
CAS
PubMed
Google Scholar
Gurvitz A, Langer S, Piskacek M, Hamilton B, Ruis H, Hartig A: Predicting the function and subcellular location of Caenorhabditis elegans proteins similar to Saccharomyces cerevisiae beta-oxidation enzymes. Yeast. 2000, 17 (3): 188-200. 10.1002/1097-0061(20000930)17:3<188::AID-YEA27>3.0.CO;2-E.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA: Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci USA. 2008, 105 (2): 728-733. 10.1073/pnas.0711018105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferdinandusse S, Denis S, Hogenhout EM, Koster J, van Roermund CW, L IJ, Moser AB, Wanders RJ, Waterham HR: Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency. Hum Mutat. 2007, 28 (9): 904-912. 10.1002/humu.20535.
Article
CAS
PubMed
Google Scholar
Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13 (9): 2178-2189. 10.1101/gr.1224503.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuwahara T, Koyama A, Koyama S, Yoshina S, Ren C-H, Kato T, Mitani S, Iwatsubo T: A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C. elegans. Hum Mol Genet. 2008, 17 (19): 2997-3009. 10.1093/hmg/ddn198.
Article
CAS
PubMed
Google Scholar
Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A: Opposing activities protect against age-onset proteotoxicity. Science. 2006, 313 (5793): 1604-1610. 10.1126/science.1124646.
Article
CAS
PubMed
Google Scholar
Kraemer BC, Schellenberg GD: SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum Mol Genet. 2007, 16 (16): 1959-1971. 10.1093/hmg/ddm143.
Article
CAS
PubMed
Google Scholar
Guthrie CR, Schellenberg GD, Kraemer BC: SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum Mol Genet. 2009, 18 (10): 1825-1838. 10.1093/hmg/ddp099.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamanaka K, Okubo Y, Suzaki T, Ogura T: Analysis of the two p97/VCP/Cdc48p proteins of Caenorhabditis elegans and their suppression of polyglutamine-induced protein aggregation. J Struct Biol. 2004, 146 (1-2): 242-250. 10.1016/j.jsb.2003.11.017.
Article
CAS
PubMed
Google Scholar
Yeger-Lotem E, Riva L, Su LJ, Gitler AD, Cashikar AG, King OD, Auluck PK, Geddie ML, Valastyan JS, Karger DR, et al: Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nature genetics. 2009, 41 (3): 316-323. 10.1038/ng.337.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blard O, Feuillette S, Bou J, Chaumette B, Frebourg T, Campion D, Lecourtois M: Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet. 2007, 16 (5): 555-566. 10.1093/hmg/ddm011.
Article
CAS
PubMed
Google Scholar
Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, et al: Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 2007, 3 (5): e82-10.1371/journal.pgen.0030082.
Article
PubMed Central
PubMed
Google Scholar
Shulman JM, Feany MB: Genetic modifiers of tauopathy in Drosophila. Genetics. 2003, 165 (3): 1233-1242.
PubMed Central
CAS
PubMed
Google Scholar
Ghosh S, Feany MB: Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Hum Mol Genet. 2004, 13 (18): 2011-2018. 10.1093/hmg/ddh214.
Article
CAS
PubMed
Google Scholar
Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, Turiegano E, Benito J, Capovilla M, Skinner PJ, et al: Identification of genes that modify ataxin-1-induced neurodegeneration. Nature. 2000, 408 (6808): 101-106. 10.1038/35040584.
Article
CAS
PubMed
Google Scholar
Kazemi-Esfarjani P, Benzer S: Genetic suppression of polyglutamine toxicity in Drosophila. Science. 2000, 287 (5459): 1837-1840. 10.1126/science.287.5459.1837.
Article
CAS
PubMed
Google Scholar
Auluck PK, Chan HYE, Trojanowski JQ, Lee VM-Y, Bonini NM: Chaperone Suppression of α-Synuclein Toxicity in a Drosophila Model for Parkinson's Disease. Science. 2002, 295 (5556): 865-868. 10.1126/science.1067389.
Article
CAS
PubMed
Google Scholar