Vigneron A, Vousden KH: p53, ROS and senescence in the control of aging. Aging (Albany NY). 2010, 2 (8): 471-474.
CAS
Google Scholar
Thomas DM, Yang HS, Alexander K, Hinds PW: Role of the retinoblastoma protein in differentiation and senescence. Cancer Biol Ther. 2003, 2 (2): 124-130.
Article
CAS
PubMed
Google Scholar
Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J: Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995, 375 (6531): 503-506. 10.1038/375503a0.
Article
CAS
PubMed
Google Scholar
Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Durr P, Wlaschek M: p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell. 2006, 5 (5): 379-389. 10.1111/j.1474-9726.2006.00231.x.
Article
CAS
PubMed
Google Scholar
Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003, 113 (6): 703-716. 10.1016/S0092-8674(03)00401-X.
Article
CAS
PubMed
Google Scholar
Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J: Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003, 22 (16): 4212-4222. 10.1093/emboj/cdg417.
Article
PubMed Central
CAS
PubMed
Google Scholar
Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, et al: Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010, 6: 347-
Article
PubMed Central
PubMed
Google Scholar
Campisi J: Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev. 2011, 21 (1): 107-112. 10.1016/j.gde.2010.10.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Toussaint O, Remacle J, Dierick JF, Pascal T, Frippiat C, Zdanov S, Magalhaes JP, Royer V, Chainiaux F: From the hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing. Int J Biochem Cell Biol. 2002, 34 (11): 1415-1429. 10.1016/S1357-2725(02)00034-1.
Article
CAS
PubMed
Google Scholar
Chainiaux F, Magalhaes JP, Eliaers F, Remacle J, Toussaint O: UVB-induced premature senescence of human diploid skin fibroblasts. Int J Biochem Cell Biol. 2002, 34 (11): 1331-1339. 10.1016/S1357-2725(02)00022-5.
Article
CAS
PubMed
Google Scholar
Borlon C, Vankoningsloo S, Godard P, Debacq-Chainiaux F, Toussaint O: Identification of p53-dependent genes potentially involved in UVB-mediated premature senescence of human skin fibroblasts using siRNA technology. Mech Ageing Dev. 2008, 129 (3): 109-119. 10.1016/j.mad.2007.10.014.
Article
CAS
PubMed
Google Scholar
Takashima A: UVB-dependent modulation of epidermal cytokine network: roles in UVB-induced depletion of langerhans cells and dendritic epidermal T cells. J Dermatol. 1995, 22 (11): 876-887.
Article
CAS
PubMed
Google Scholar
el-Ghorr AA, Norval M: Biological effects of narrow-band (311 nm TL01) UVB irradiation: a review. J Photochem Photobiol B. 1997, 38 (2–3): 99-106.
Article
CAS
PubMed
Google Scholar
Almeida MI, Reis RM, Calin GA: MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res. 2011, 717 (1–2): 1-8.
Article
CAS
PubMed
Google Scholar
Thomas M, Lieberman J, Lal A: Desperately seeking microRNA targets. Nat Struct Mol Biol. 2010, 17 (10): 1169-1174. 10.1038/nsmb.1921.
Article
CAS
PubMed
Google Scholar
Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Muck C, Laschober GT, Lepperdinger G, Sampson N, Berger P, et al: miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell. 2010, 9 (2): 291-296. 10.1111/j.1474-9726.2010.00549.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liang R, Bates DJ, Wang E: Epigenetic control of MicroRNA expression and aging. Curr Genomics. 2009, 10 (3): 184-193. 10.2174/138920209788185225.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grillari J, Grillari-Voglauer R: Novel modulators of senescence, aging, and longevity: Small non-coding RNAs enter the stage. Exp Gerontol. 2010, 45 (4): 302-311. 10.1016/j.exger.2010.01.007.
Article
CAS
PubMed
Google Scholar
Chen W, Kang J, Xia J, Li Y, Yang B, Chen B, Sun W, Song X, Xiang W, Wang X, et al: p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts. Int J Mol Med. 2008, 21 (5): 645-653.
CAS
PubMed
Google Scholar
Dumaz N, Drougard C, Quilliet X, Mezzina M, Sarasin A, Daya-Grosjean L: Recovery of the normal p53 response after UV treatment in DNA repair-deficient fibroblasts by retroviral-mediated correction with the XPD gene. Carcinogenesis. 1998, 19 (9): 1701-1704. 10.1093/carcin/19.9.1701.
Article
CAS
PubMed
Google Scholar
Di Leonardo A, Linke SP, Clarkin K, Wahl GM: DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994, 8 (21): 2540-2551. 10.1101/gad.8.21.2540.
Article
CAS
PubMed
Google Scholar
England NL, Cuthbert AP, Trott DA, Jezzard S, Nobori T, Carson DA, Newbold RF: Identification of human tumour suppressor genes by monochromosome transfer: rapid growth-arrest response mapped to 9p21 is mediated solely by the cyclin-D-dependent kinase inhibitor gene, CDKN2A (p16INK4A). Carcinogenesis. 1996, 17 (8): 1567-1575. 10.1093/carcin/17.8.1567.
Article
CAS
PubMed
Google Scholar
Ahmed NU, Ueda M, Ichihashi M: Induced expression of p16 and p21 proteins in UVB-irradiated human epidermis and cultured keratinocytes. J Dermatol Sci. 1999, 19 (3): 175-181. 10.1016/S0923-1811(98)00068-1.
Article
CAS
PubMed
Google Scholar
Medrano EE, Im S, Yang F, Abdel-Malek ZA: Ultraviolet B light induces G1 arrest in human melanocytes by prolonged inhibition of retinoblastoma protein phosphorylation associated with long-term expression of the p21Waf-1/SDI-1/Cip-1 protein. Cancer Res. 1995, 55 (18): 4047-4052.
CAS
PubMed
Google Scholar
Fang Y, Hu XH, Jia ZG, Xu MH, Guo ZY, Gao FH: Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas J Dermatol. 2012, 53 (3): 172-180. 10.1111/j.1440-0960.2012.00912.x.
Article
PubMed
Google Scholar
Tagawa H, Karube K, Tsuzuki S, Ohshima K, Seto M: Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci. 2007, 98 (9): 1482-1490. 10.1111/j.1349-7006.2007.00531.x.
Article
CAS
PubMed
Google Scholar
Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C, Quan L, Bai J, Xu N: Suppression of p21 by c-Myc through members of miR-17 family at the post-transcriptional level. Int J Oncol. 2010, 37 (5): 1315-1321.
Article
CAS
PubMed
Google Scholar
Biyashev D, Qin G: E2F and microRNA regulation of angiogenesis. Am J Cardiovasc Dis. 2011, 1 (2): 110-118.
PubMed Central
CAS
PubMed
Google Scholar
Long J, Wang Y, Wang W, Chang BH, Danesh FR: Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. 2010, 285 (30): 23457-23465. 10.1074/jbc.M110.136168.
Article
PubMed Central
CAS
PubMed
Google Scholar
Choi OR, Lim IK: Loss of p21(Sdi1) expression in senescent cells after DNA damage accompanied with increase of miR-93 expression and reduced p53 interaction with p21(Sdi1) gene promoter. Biochem Biophys Res Commun. 2011, 407 (2): 406-411. 10.1016/j.bbrc.2011.03.038.
Article
CAS
PubMed
Google Scholar
Fu X, Tian J, Zhang L, Chen Y, Hao Q: Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett. 2012, 586 (9): 1279-1286. 10.1016/j.febslet.2012.03.006.
Article
CAS
PubMed
Google Scholar
Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, et al: The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010, 17 (1): 28-40. 10.1016/j.ccr.2009.11.019.
Article
CAS
PubMed
Google Scholar
Aqeilan RI, Calin GA: Croce CM: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010, 17 (2): 215-220. 10.1038/cdd.2009.69.
Article
CAS
PubMed
Google Scholar
Cao R, Zhang Y: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004, 15 (1): 57-67. 10.1016/j.molcel.2004.06.020.
Article
CAS
PubMed
Google Scholar
Carvalho J, van Grieken NC, Pereira PM, Sousa S, Tijssen M, Buffart TE, Diosdado B, Grabsch H, Santos MA, Meijer G, et al: Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer. J Pathol. 2012, 228 (1): 31-44.
CAS
PubMed
Google Scholar
He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447 (7148): 1130-1134. 10.1038/nature05939.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chekulaeva M, Filipowicz W: Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol. 2009, 21 (3): 452-460. 10.1016/j.ceb.2009.04.009.
Article
CAS
PubMed
Google Scholar
Yan H, Wu J, Liu W, Zuo Y, Chen S, Zhang S, Zeng M, Huang W: MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum Gene Ther. 2010, 21 (12): 1723-1734. 10.1089/hum.2010.061.
Article
CAS
PubMed
Google Scholar
Pin AL, Houle F, Guillonneau M, Paquet ER, Simard MJ: Huot J: miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis. 2012, 15 (4): 593-608. 10.1007/s10456-012-9283-z.
Article
CAS
PubMed
Google Scholar
Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, et al: MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 2012, 8 (6): e1002751-10.1371/journal.pgen.1002751.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu XF, Zou J, Bao ZJ: Dong J: miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol. 2011, 17 (42): 4711-4717. 10.3748/wjg.v17.i42.4711.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW, Yee AJ, Ang LC, He C, Shan SW, et al: MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene. 2011, 30 (7): 806-821. 10.1038/onc.2010.465.
Article
CAS
PubMed
Google Scholar
Xu D, He XX, Chang Y, Sun SZ, Xu CR, Lin JS: Downregulation of MiR-93 expression reduces cell proliferation and clonogenicity of HepG2 cells. Hepatogastroenterology. 2012, 59 (120): 2367-2373.
CAS
PubMed
Google Scholar
Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, Lim L, Burchard J, Jackson AL, et al: MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 2008, 28 (7): 2167-2174. 10.1128/MCB.01977-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C, Chen CZ, Cleary ML: The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res. 2010, 70 (9): 3833-3842. 10.1158/0008-5472.CAN-09-3268.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ciccia A, Elledge SJ: The DNA damage response: making it safe to play with knives. Mol Cell. 2010, 40 (2): 179-204. 10.1016/j.molcel.2010.09.019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Finnerty JR, Wang WX, Hebert SS, Wilfred BR, Mao G, Nelson PT: The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol. 2010, 402 (3): 491-509. 10.1016/j.jmb.2010.07.051.
Article
PubMed Central
CAS
PubMed
Google Scholar
Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, et al: Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011, 30 (41): 4231-4242. 10.1038/onc.2011.140.
Article
CAS
PubMed
Google Scholar
Pedley J, Ablett EM, Pettit A, Meyer J, Dunn IS, Sturm RA, Parsons PG: Inhibition of retinoblastoma protein translation by UVB in human melanocytic cells and reduced cell cycle arrest following repeated irradiation. Oncogene. 1996, 13 (6): 1335-1342.
CAS
PubMed
Google Scholar
Tong X, Van Dross RT, Abu-Yousif A, Morrison AR, Pelling JC: Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition. Mol Cell Biol. 2007, 27 (1): 283-296. 10.1128/MCB.01282-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008, 322 (5908): 1695-1699. 10.1126/science.1165395.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G: MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. 2010, 9: 108-10.1186/1476-4598-9-108.
Article
PubMed Central
PubMed
Google Scholar
Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, et al: The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007, 21 (5): 525-530. 10.1101/gad.415507.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fan T, Jiang S, Chung N, Alikhan A, Ni C, Lee CC, Hornyak TJ: EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res. 2011, 9 (4): 418-429. 10.1158/1541-7786.MCR-10-0511.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tzatsos A, Paskaleva P, Lymperi S, Contino G, Stoykova S, Chen Z, Wong KK, Bardeesy N: A lysine (K)-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. J Biol Chem. 2011, 286 (38): 33061-33069. 10.1074/jbc.M111.257667.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tang X, Milyavsky M, Shats I, Erez N, Goldfinger N, Rotter V: Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene. 2004, 23 (34): 5759-5769. 10.1038/sj.onc.1207706.
Article
CAS
PubMed
Google Scholar
Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007, 6 (13): 1586-1593. 10.4161/cc.6.13.4436.
Article
CAS
PubMed
Google Scholar
Hutter E, Renner K, Pfister G, Stockl P, Jansen-Durr P, Gnaiger E: Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J. 2004, 380 (Pt 3): 919-928.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995, 92 (20): 9363-9367. 10.1073/pnas.92.20.9363.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laschober GT, Ruli D, Hofer E, Muck C, Carmona-Gutierrez D, Ring J, Hutter E, Ruckenstuhl C, Micutkova L, Brunauer R, et al: Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell. 2010, 9 (6): 1084-1097. 10.1111/j.1474-9726.2010.00637.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU: A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA. 2006, 12 (5): 913-920. 10.1261/rna.2332406.
Article
PubMed Central
CAS
PubMed
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36 (Database issue): D154-D158.
PubMed Central
CAS
PubMed
Google Scholar
Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3: Article3-
PubMed
Google Scholar
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27 (1): 91-105. 10.1016/j.molcel.2007.06.017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al: Combinatorial microRNA target predictions. Nat Genet. 2005, 37 (5): 495-500. 10.1038/ng1536.
Article
CAS
PubMed
Google Scholar
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34 (Database issue): D140-D144.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 2007, 39 (10): 1278-1284. 10.1038/ng2135.
Article
CAS
PubMed
Google Scholar
Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M: Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinforma. 2007, 8: 69-10.1186/1471-2105-8-69.
Article
Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126 (6): 1203-1217. 10.1016/j.cell.2006.07.031.
Article
CAS
PubMed
Google Scholar
Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, et al: DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 2009, 37 (Web Server issue): W273-W276.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD: Using expression profiling data to identify human microRNA targets. Nat Methods. 2007, 4 (12): 1045-1049. 10.1038/nmeth1130.
Article
CAS
PubMed
Google Scholar
Saito T, Saetrom P: MicroRNAs-targeting and target prediction. N Biotechnol. 2010, 27 (3): 243-249. 10.1016/j.nbt.2010.02.016.
Article
CAS
PubMed
Google Scholar
Sturn A, Quackenbush J, Trajanoski Z: Genesis: cluster analysis of microarray data. Bioinformatics. 2002, 18 (1): 207-208. 10.1093/bioinformatics/18.1.207.
Article
CAS
PubMed
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J: ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009, 25 (8): 1091-1093. 10.1093/bioinformatics/btp101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13 (11): 2498-2504. 10.1101/gr.1239303.
Article
PubMed Central
CAS
PubMed
Google Scholar