Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, Fay MF: Genome size diversity in orchids: consequences and evolution. Ann Bot. 2009, 104 (3): 469-481. 10.1093/aob/mcp003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu ZY, Raven PH, Hong DY: Flora of China. Volume 25 (Orchidaceae). 2009, Beijing, St. Louis: Science Press and Missouri Botanical Garden Press, 260-
Google Scholar
Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P: Physiological signals that induce flowering. Plant Cell. 1993, 5: 1147-1155.
Article
PubMed Central
CAS
PubMed
Google Scholar
Komeda Y: Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol. 2004, 55: 521-535. 10.1146/annurev.arplant.55.031903.141644.
Article
CAS
PubMed
Google Scholar
Yu H, Yang SH, Goh CJ: DOH1, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid. Plant Cell. 2000, 12 (11): 2143-2159.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu H, Yang SH, Goh CJ: Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol Biol. 2002, 49 (2): 225-237. 10.1023/A:1014958118852.
Article
CAS
PubMed
Google Scholar
Xu Y, Teo LL, Zhou J, Kumar PP, Yu H: Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 2006, 46: 54-68. 10.1111/j.1365-313X.2006.02669.x.
Article
CAS
PubMed
Google Scholar
Hsu HF, Yang CH: An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 2002, 43 (10): 1198-1209. 10.1093/pcp/pcf143.
Article
CAS
PubMed
Google Scholar
Hsu HF, Huang CH, Chou LT, Yang CH: Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 2003, 44 (8): 783-794. 10.1093/pcp/pcg099.
Article
CAS
PubMed
Google Scholar
Niwa Y, Yamashino T, Mizuno T: The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol. 2009, 50 (4): 838-854. 10.1093/pcp/pcp028.
Article
CAS
PubMed
Google Scholar
Putterill J, Robson F, Lee K, Simon R, Coupland G: The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell. 1995, 80: 847-857. 10.1016/0092-8674(95)90288-0.
Article
CAS
PubMed
Google Scholar
Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G: CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 2001, 410: 1116-1120. 10.1038/35074138.
Article
CAS
PubMed
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res. 1997, 7 (10): 986-95.
CAS
PubMed
Google Scholar
Simpson GG: Evolution of flowering in response to day length flipping the CONSTANS switch. Bioessays. 2003, 25: 829-832. 10.1002/bies.10330.
Article
CAS
PubMed
Google Scholar
Ahmad M, Cashmore AR: HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993, 366: 162-166. 10.1038/366162a0.
Article
CAS
PubMed
Google Scholar
Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J, Jarillo JA, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rüdiger , Sakai T, Takano M, Wada M, Watson JC: The phototropin family of photoreceptors. Plant Cell. 2001, 13: 993-997.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR: Enhancement of the blue-light sensitivity of Arabidopsis young seedlings by a blue-light receptor cry2. Proc Natl Acad Sci USA. 1998, 95: 2686-2690. 10.1073/pnas.95.5.2686.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parks BM: Quail PH: hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993, 5: 39-48.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reed JW, Nagpal P, Poole DS, Furuya M, Chory J: Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993, 5: 147-157.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J: GIGANTEA: a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane spanning domains. EMBO J. 1999, 18: 4679-4688. 10.1093/emboj/18.17.4679.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hicks KA, Albertson TM, Wagner DR: EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell. 2001, 13: 1281-1292.
Article
PubMed Central
CAS
PubMed
Google Scholar
Simpson GG, Dean C: Arabidopsis, the Rosetta stone of flowering time?. Science. 2002, 296: 285-289. 10.1126/science.296.5566.285.
Article
CAS
PubMed
Google Scholar
Somers DE: The physiology and molecular bases of the plant circadian clock. Plant Physiol. 1999, 121: 9-20. 10.1104/pp.121.1.9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alabadid D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA: Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science. 2001, 293: 880-883. 10.1126/science.1061320.
Article
Google Scholar
Millar AJ: Input signals to the plant circadian clock. J Exp Bot. 2004, 55: 277-283.
Article
CAS
PubMed
Google Scholar
McWatters HG, Bastow RM, Hall A, Millar AJ: The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature. 2000, 408: 716-720. 10.1038/35047079.
Article
CAS
PubMed
Google Scholar
Dixon LE, Knox K, Kozma-Bognar L, Southern MM, Pokhilko A, Millar AJ: Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Curr Biol. 2011, 21: 120-125. 10.1016/j.cub.2010.12.013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G: Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell. 2005, 17: 2255-2270. 10.1105/tpc.105.033464.
Article
PubMed Central
CAS
PubMed
Google Scholar
Locke JCW, Kozma-Bognar L, Gould PD, Fehér B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ: Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol. 2006, 2: 59-
Article
PubMed Central
PubMed
Google Scholar
Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy E, Millar AJ, Amasino RM: The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature. 2002, 419: 74-77. 10.1038/nature00954.
Article
CAS
PubMed
Google Scholar
Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D: Activation tagging of the floral inducer FT. Science. 1999, 286: 1962-1965. 10.1126/science.286.5446.1962.
Article
CAS
PubMed
Google Scholar
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G: Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science. 2000, 288: 1613-1616. 10.1126/science.288.5471.1613.
Article
CAS
PubMed
Google Scholar
Griffths S, Dunford RP, Coupland G, Laurie DA: The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 2003, 131: 1855-1867. 10.1104/pp.102.016188.
Article
Google Scholar
Robson F, Costa MMR, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G: Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 2001, 28: 619-631.
Article
CAS
PubMed
Google Scholar
Ledger S, Strayer C, Ashton F, Kay SA, Putterill J: Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J. 2001, 26: 15-22. 10.1046/j.1365-313x.2001.01003.x.
Article
CAS
PubMed
Google Scholar
Chandler J, Wilson A, Dean C: Arabidopsis mutants showing an altered response to vernalization. Plant J. 1996, 10: 637-644. 10.1046/j.1365-313X.1996.10040637.x.
Article
CAS
PubMed
Google Scholar
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES: The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA. 2000, 97: 3753-3758. 10.1073/pnas.97.7.3753.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gendall AR, Levy YY, Wilson A, Dean C: The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell. 2001, 107: 525-535. 10.1016/S0092-8674(01)00573-6.
Article
CAS
PubMed
Google Scholar
Amador V, Monte E, Garcia-Martinez JL, Prat S: Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell. 2001, 106 (3): 343-354. 10.1016/S0092-8674(01)00445-7.
Article
CAS
PubMed
Google Scholar
Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G: Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 2002, 21: 4327-4337. 10.1093/emboj/cdf432.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E: Inflorescence commitment and architecture in Arabidopsis. Science. 1997, 275: 80-83. 10.1126/science.275.5296.80.
Article
CAS
PubMed
Google Scholar
Alvarez J, Guli CL, Yu XH, Smyth DR: Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 1992, 2: 103-116. 10.1111/j.1365-313X.1992.00103.x.
Article
Google Scholar
Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF: Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992, 360: 273-277. 10.1038/360273a0.
Article
CAS
PubMed
Google Scholar
Jofuku KD, den Boer BGW, Van Montagu M, Okamuro JK: Control of Arabidopsis flower and seed development by homeotic gene APETALA2. Plant Cell. 1994, 6: 1211-1225.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kempin SA, Savidge B, Yanofsky MF: Molecular basis of the cauliflower phenotype of Arabidopsis. Science. 1994, 267: 522-525.
Article
Google Scholar
Yanofsky MF: Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annu Rev Plant Physiol Plant Mol Biol. 1995, 46: 167-188. 10.1146/annurev.pp.46.060195.001123.
Article
CAS
Google Scholar
Schultz EA, Haughn GW: LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell. 1991, 3: 771-781.
Article
PubMed Central
PubMed
Google Scholar
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM: LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992, 69 (5): 843-859. 10.1016/0092-8674(92)90295-N.
Article
CAS
PubMed
Google Scholar
Pidkowich MS, Klenz JE, Haughn GW: The making of a flower: control of floral meristem identity in Arabidopsis. Plant Sci. 1999, 4: 64-70. 10.1016/S1360-1385(98)01369-7.
Article
Google Scholar
Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R: floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell. 1990, 63: 1311-1322. 10.1016/0092-8674(90)90426-F.
Article
CAS
PubMed
Google Scholar
Nilsson O, Lee Y, Blazquez MA, Weigel D: Flowering time genes modulate the response to LEAFY activity. Genetics. 1998, 150: 403-410.
PubMed Central
CAS
PubMed
Google Scholar
Parcy F, Nilsson O, Busch MA, Lee I, Weigel D: A genetic framework for floral patterning. Nature. 1998, 395: 561-566. 10.1038/26903.
Article
CAS
PubMed
Google Scholar
Irish VF, Sussex IM: Function of the APETALA1 gene during Arabidopsis floral development. Plant Cell. 1990, 2: 741-753.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huala E, Sussex IM: LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell. 1992, 4: 901-913.
Article
PubMed Central
PubMed
Google Scholar
Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR: Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development. 1993, 119: 721-743.
CAS
Google Scholar
Shannon S, Meeks-Wagner DR: Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell. 1993, 5: 639-655.
Article
PubMed Central
PubMed
Google Scholar
Mandel MA, Yanofsky MF: A gene triggering flower formation in Arabidopsis. Nature. 1995, 377: 522-524. 10.1038/377522a0.
Article
CAS
PubMed
Google Scholar
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ: SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996, 86: 263-274. 10.1016/S0092-8674(00)80098-7.
Article
CAS
PubMed
Google Scholar
Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF: Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development. 2000, 127: 725-734.
CAS
PubMed
Google Scholar
Lee I, Wolfe DS, Nilsson O, Weigel D: A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol. 1997, 7: 95-104. 10.1016/S0960-9822(06)00053-4.
Article
PubMed
Google Scholar
Hagen G, Guilfoyle TJ: Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol. 2002, 49: 373-385. 10.1023/A:1015207114117.
Article
CAS
PubMed
Google Scholar
Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW: AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development. 2005, 132: 4563-4574. 10.1242/dev.02012.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis Z, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011, 29: 644-652. 10.1038/nbt.1883.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21 (18): 3674-3676. 10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J: WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006, 34 (Web Server issue): W293-297.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36 (Database issue): D480-484.
PubMed Central
CAS
PubMed
Google Scholar
Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009, 25 (15): 1966-1967. 10.1093/bioinformatics/btp336.
Article
CAS
PubMed
Google Scholar
Xue J, Bao YY, Li BL, Cheng YB, Peng ZY, Liu H, Xu HJ, Zhu ZR, Lou YG, Cheng JA, Zhang CX: Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS One. 2010, 5 (12): e14233-10.1371/journal.pone.0014233.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Hoon MJL, Imoto S, Nolan J, Miyano S: Open Source Clustering Software. Bioinformatics. 2004, 20 (9): 1453-1454. 10.1093/bioinformatics/bth078.
Article
CAS
PubMed
Google Scholar
Saldanha AJ: Java Treeview-extensible visualization of microarray data. Bioinformatics. 2004, 20 (17): 3246-3248. 10.1093/bioinformatics/bth349.
Article
CAS
PubMed
Google Scholar