Weismann A: On the significance of the polar globules. Nature. 1887, 36: 607-609.
Google Scholar
Bell G: The masterpiece of nature: the evolution and genetics of sexuality. 1982, Berkeley: University of California Press
Google Scholar
Maynard Smith J: The evolution of sex. 1978, London, New York, Melbourne: Cambridge University Press, 1
Google Scholar
Ramesh MA, Malik S-B, Logsdon JM: A phylogenomic inventory of meiotic genes: evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol. 2005, 15: 185-191.
CAS
PubMed
Google Scholar
Bode SNS, Adolfsson S, Lamatsch DK, Martins MJF, Schmit O, Vandekerkhove J, Mezquita F, Namiotko T, Rossetti G, Schön I, et al: Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Molecular Phylogenetics and Evolution. 2010, 54 (2): 542-552. 10.1016/j.ympev.2009.08.022.
CAS
PubMed
Google Scholar
Fernãndez R, Almodóvar A, Novo M, Simancas B, Cosín DJD: Adding complexity to the complex: new insights into the phylogeny, diversification and origin of parthenogenesis in the Aporrectodea caliginosa species complex (Oligochaeta, Lumbricidae). Molecular Phylogenetics and Evolution. 2012, 64 (2): 368-379. 10.1016/j.ympev.2012.04.011.
PubMed
Google Scholar
West SA, Lively CM, Read AF: A pluralist approach to sex and recombination. J Evol Biol. 1999, 12: 1003-1012. 10.1046/j.1420-9101.1999.00119.x.
Google Scholar
Kondrashov AS: Classification of hypotheses on the advantage of amphimixis. J Hered. 1993, 84: 372-387.
CAS
PubMed
Google Scholar
Meirmans S, Strand R: Why are there so many theories for sex, and what do we do with them?. J Hered. 2010, 101 (Supplement 1): S3-S12. 10.1093/jhered/esq021.
PubMed
Google Scholar
Mark Welch D, Meselson M: Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science. 2000, 288: 1211-1215. 10.1126/science.288.5469.1211.
CAS
PubMed
Google Scholar
Mark Welch DB, Meselson M: Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proc Natl Acad Sci USA. 2001, 98 (12): 6720-6724. 10.1073/pnas.111144598.
CAS
PubMed
Google Scholar
Gilbert JJ: Environmental and endogenous control of sexuality in a rotifer life cycle: developmental and population biology. Evol Dev. 2003, 5 (1): 19-24. 10.1046/j.1525-142X.2003.03004.x.
PubMed
Google Scholar
Snell TW, Boyer EM: Thresholds for mictic female production in the rotifer Brachionus plicatilis (Muller). J Exp Mar Biol Ecol. 1988, 124: 73-85. 10.1016/0022-0981(88)90112-8.
Google Scholar
Snell TW, Kubanek J, Carter W, Payne AB, Kim J, Hicks MK, Stelzer C-P: A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Mar Biol. 2006, 149: 763-773. 10.1007/s00227-006-0251-2.
CAS
Google Scholar
Gilbert JJ: Dormancy in rotifers. Trans Amer Micros Soc. 1974, 93 (4): 490-513. 10.2307/3225154.
Google Scholar
Stelzer C-P: Obligate asex in a rotifer and the role of sexual signals. J Evol Biol. 2008, 21: 287-293.
PubMed
Google Scholar
Fussmann GF, Ellner SP, Hairston NG: Evolution as a critical component of plankton dynamics. Proc R Soc B. 2003, 270: 1015-1022. 10.1098/rspb.2003.2335.
PubMed Central
PubMed
Google Scholar
Stelzer C-P, Schmidt J, Wiedlroither A, Riss S: Loss of sexual reproduction and dwarfing in a small metazon. PLoS One. 2010, 5 (9): e12854-10.1371/journal.pone.0012854.
PubMed Central
PubMed
Google Scholar
Stelzer C-P: The cost of sex and competition between cyclical and obligate parthenogenetic rotifers. Am Nat. 2011, 177 (2): E43-E53. 10.1086/657685.
PubMed
Google Scholar
Stout EP, La Clair JJ, Snell TW, Shearer TL, Kubanek J: Conservation of progesterone hormone function in invertebrate reproduction. Proc Natl Acad Sci USA. 2010, 107 (26): 11859-11864. 10.1073/pnas.1006074107.
PubMed Central
CAS
PubMed
Google Scholar
Snell TW, DesRosiers NJD: Effect of progesterone on sexual reproduction of Brachionus manjavacas (Rotifera). J Exp Mar Biol Ecol. 2008, 363: 104-109. 10.1016/j.jembe.2008.06.031.
CAS
Google Scholar
Yang J, Snell TW: Effects of progesterone, testosterone, and estrogen on sexual reproduction of the rotifer Brachionus calyciflorus. Int Rev Hydrobiol. 2010, 95 (6): 441-449. 10.1002/iroh.201011267.
CAS
Google Scholar
Denekamp NY, Thorne MAS, Clark MS, Kube M, Reinhardt R, Lubzens E: Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics. 2009, 10 (108): 1-17.
Google Scholar
Clark MS, Denekamp NY, Thorne MAS, Reinhardt R, Drungowski M, Albrecht MW, Klages S, Beck A, Kube M, Lubzens E: Long-term survival of hydrated resting eggs from Brachionus plicatilis. PLoS One. 2012, 7 (1): e29365-10.1371/journal.pone.0029365.
PubMed Central
CAS
PubMed
Google Scholar
Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L: COMBO: A defined freshwater culture medium for algae and zooplankton. Hydrobiologia. 1998, 377: 147-159. 10.1023/A:1003231628456.
CAS
Google Scholar
Stelzer C-P, Snell TW: Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent chemical cue. Limnol Oceanogr. 2003, 48 (2): 939-943. 10.4319/lo.2003.48.2.0939.
Google Scholar
Goecks J, Nekrutenko A, Taylor J, Team TG: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11 (8): R86-10.1186/gb-2010-11-8-r86.
PubMed Central
PubMed
Google Scholar
Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Current Protocols in Molecular Biology. 2010, 19.10: 11-21.
Google Scholar
Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, et al: Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005, 15 (10): 1451-1455. 10.1101/gr.4086505.
PubMed Central
CAS
PubMed
Google Scholar
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, et al: The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007, 318 (5848): 245-250. 10.1126/science.1143609.
PubMed Central
CAS
PubMed
Google Scholar
Hanson SJ, Schurko AM, Hecox-Lea B, Mark Welch D, Stelzer C-P, Logsdon JM: Inventory and phylogenetic analysis of meiotic genes in monogonont rotifers. J Hered. 2013, 104 (3): 357-370. 10.1093/jhered/est011.
PubMed Central
CAS
PubMed
Google Scholar
Trapnell C, Pachiter L, Salzber SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009, 25 (9): 1105-1111. 10.1093/bioinformatics/btp120.
PubMed Central
CAS
PubMed
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012, 7: 562-578.
PubMed Central
CAS
PubMed
Google Scholar
Robinson MD, Mccarthy DJ, Smyth GK: EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010, 26 (1): 139-140. 10.1093/bioinformatics/btp616.
PubMed Central
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23 (21): 2947-2948. 10.1093/bioinformatics/btm404.
CAS
PubMed
Google Scholar
Kumar S, Skjæveland Å, Orr RJ, Enger P, Ruden T, Mevik B-H, Burki F, Botnen A, Shalchian-Tabrizi K: AIR: a batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses. BMC Bioinforma. 2009, 10 (1): 357-10.1186/1471-2105-10-357.
Google Scholar
Guindon SXEP, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
PubMed
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinforma. 2009, 10 (1): 421-10.1186/1471-2105-10-421.
Google Scholar
Conesa A, Götz S: Blast2GO: a comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics. 2008, 2008: 1-12.
Google Scholar
Snell TW, Shearer TL, Smith HA, Kubanek J, Gribble KE, Mark Welch DB: Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera). BMC Biol. 2009, 7 (60): 1-12.
Google Scholar
Gomez A, Serra M: Mate choice in male Brachionus plicatilis rotifers. Funct Ecol. 1996, 10 (6): 681-687. 10.2307/2390502.
Google Scholar
Suga K, Mark Welch D, Tanaka Y, Sakakura Y, Hagiwara A: Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS One. 2007, 2 (8): e671-10.1371/journal.pone.0000671.
PubMed Central
PubMed
Google Scholar
Denekamp NY, Suga K, Hagiwara A, Reinhardt R, Lubzens E: A role for molecular studies in unveiling the pathways for formation of rotifer resting eggs and their survival during dormancy. Dormancy and Resistance in Harsh Environments, Topics in Current Genetics. 2010, 21: 109-132. 10.1007/978-3-642-12422-8_7.
Google Scholar
Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y, Lubzens E, Barraclough TG, Micklem G, Tunnacliffe A: Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genetics. 2012, 8 (11): e1003035-10.1371/journal.pgen.1003035.
PubMed Central
CAS
PubMed
Google Scholar
Gallardo W, Hagiwara A, Tomita Y, Soyano K, Snell T: Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotifer Brachionus plicatilis Muller. Hydrobiologia. 1997, 358: 113-120. 10.1023/A:1003124205002.
CAS
Google Scholar
Bridgham JT, Eick GN, Larroux C, Deshpande K, Harms MJ, Gauthier MEA, Ortlund EA, Degnan BM, Thornton JW: Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol. 2010, 8 (10): e1000497-10.1371/journal.pbio.1000497.
PubMed Central
PubMed
Google Scholar
Bowles J, Koopman P: Retinoic acid, meiosis and germ cell fate in mammals. Development. 2007, 134 (19): 3401-3411. 10.1242/dev.001107.
CAS
PubMed
Google Scholar
Bagamasbad P, Denver RJ: Mechanisms and significance of nuclear receptor auto- and cross-regulation. Gen Comp Endocrinol. 2011, 170 (1): 3-17. 10.1016/j.ygcen.2010.03.013.
PubMed Central
CAS
PubMed
Google Scholar
Gronemeyer H, Gustafsson J-Å, Laudet V: Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov. 2004, 3 (11): 950-964. 10.1038/nrd1551.
CAS
PubMed
Google Scholar
Shi Y, Mello C: A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev. 1998, 12: 943-955. 10.1101/gad.12.7.943.
PubMed Central
CAS
PubMed
Google Scholar
Kovo M, Kandli-Cohen M, Ben-Haim M, Galiani D, Carr D, Dekel N: An active protein kinase A (PKA) is involved in meiotic arrest of rat growing oocytes. Reproduction. 2006, 132: 33-43. 10.1530/rep.1.00824.
CAS
PubMed
Google Scholar
Viegas LR, Vicent GP, Baranao JL, Beato M, Pecci A: Steroid hormones induce bcl-x gene expression through direct activation of distal promoter P4. J Biol Chem. 2003, 279 (11): 9831-9839. 10.1074/jbc.M312402200.
PubMed
Google Scholar
Schurko AM, Logsdon JM: Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. BioEssays. 2008, 30: 579-589. 10.1002/bies.20764.
CAS
PubMed
Google Scholar
Pesin J, Orr-Weaver T: Regulation of APC/C activators in mitosis and meiosis. Annual Review of Cell and Developmental Biology. 2008, 24: 475-499. 10.1146/annurev.cellbio.041408.115949.
PubMed Central
CAS
PubMed
Google Scholar
Swan A, Schupbach T: The Cdc20 (Fzy)/Cdh1-related protein, Cort, cooperates with Fzy in cyclin destruction and anaphase progression in meiosis I and II in Drosophila. Development. 2007, 134 (5): 891-899. 10.1242/dev.02784.
PubMed Central
CAS
PubMed
Google Scholar
Talbert PB, Henikoff S: Histone variants — ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 2010, 11 (4): 264-275. 10.1038/nrm2861.
CAS
PubMed
Google Scholar
Van Doninck K, Mandigo M, Hur J, Wang P, Guglielmini J, Milinkovitch M, Lane W, Meselson M: Phylogenomics of unusual histone H2A variants in bdelloid rotifers. PLoS Genetics. 2009, 5 (3): e1000401-10.1371/journal.pgen.1000401.
PubMed Central
PubMed
Google Scholar
Ehinger A, Denison SH, May GS: Sequence, organization and expression of the core histone genes of Aspergillus nidulans. Mol Gen Genet. 1990, 222: 416-424. 10.1007/BF00633848.
CAS
PubMed
Google Scholar
Buschbeck M, Uribesalgo I, Wibowo I, Rué P, Martin D, Gutierrez A, Morey L, Guigó R, López-Schier H, Croce LD: The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol. 2009, 16 (10): 1074-1079. 10.1038/nsmb.1665.
CAS
PubMed
Google Scholar
O’Donnell L, Panier S, Wildenhain J, Tkach JM, Al-Hakim A, Landry M-C, Escribano-Diaz C, Szilard RK, Young JTF, Munro M, et al: The MMS22L-TONSL complex mediates recovery from replication stress and homologous recombination. Molecular Cell. 2010, 40 (4): 619-631. 10.1016/j.molcel.2010.10.024.
PubMed Central
PubMed
Google Scholar
Schwab KR, Patel SR, Dressler GR: Role of PTIP in class switch recombination and long-range chromatin interactions at the immunoglobulin heavy chain locus. Mol Cell Biol. 2011, 31 (7): 1503-1511. 10.1128/MCB.00990-10.
PubMed Central
CAS
PubMed
Google Scholar
Stein AB, Jones TA, Herron TJ, Patel SR, Day SM, Noujaim SF, Milstein ML, Klos M, Furspan PB, Jalife J, et al: Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest. 2011, 121 (7): 2641-2650. 10.1172/JCI44641.
PubMed Central
CAS
PubMed
Google Scholar
Kota SK, Feil R: Epigenetic transitions in germ cell development and meiosis. Developmental Cell. 2010, 19 (5): 675-686. 10.1016/j.devcel.2010.10.009.
CAS
PubMed
Google Scholar
Petersen C, Fuzesi L, Hoyer-Fender S: Outer dense fibre proteins from human sperm tail: molecular cloning and expression analyses of two cDNA transcripts encoding proteins of 70 kDa. Mol Hum Reprod. 1999, 5 (7): 627-635. 10.1093/molehr/5.7.627.
CAS
PubMed
Google Scholar
Soung N-K, Kang YH, Kim K, Kamijo K, Yoon H, Seong Y-S, Kuo Y-L, Miki T, Kim SR, Kuriyama R, et al: Requirement of hCenexin for proper mitotic functions of Polo-Like Kinase 1 at the centrosomes. Mol Cell Biol. 2006, 26 (22): 8316-8335. 10.1128/MCB.00671-06.
PubMed Central
CAS
PubMed
Google Scholar
Kiselak EA, Shen X, Song J, Gude DR, Wang J, Brody SL, Strauss JF, Zhang Z: Transcriptional regulation of an axonemal central apparatus gene, Sperm-associated Antigen 6, by a SRY-related high mobility group transcription factor, S-SOX5. J Biol Chem. 2010, 285 (40): 30496-30505. 10.1074/jbc.M110.121590.
PubMed Central
CAS
PubMed
Google Scholar
Zhang Z, Jones BH, Tang W, Moss SB, Wei Z, Ho C, Pollack M, Horowitz E, Bennett J, Baker ME, et al: Dissecting the axoneme interactome: The mammalian orthologue of Chlamydomonas PF6 interacts with Sperm-Associated Antigen 6, the mammalian orthologue of Chlamydomonas PF16. Molecular & Cellular Proteomics. 2005, 4 (7): 914-923. 10.1074/mcp.M400177-MCP200.
CAS
Google Scholar
Zhang Z, Kostetskii I, Moss SB, Jones BH, Ho C, Wang H, Kishida T, Gerton GL, Radice GL, Strauss JF: Haploinsufficiency for the murine orthologue of Chlamydomonas PF20 disrupts spermatogenesis. Proc Natl Acad Sci. 2004, 101 (35): 12946-12951. 10.1073/pnas.0404280101.
PubMed Central
CAS
PubMed
Google Scholar
Chan SW, Fowler KJ, Choo KHA, Kalitsis P: Spef1, a conserved novel testis protein found in mouse sperm flagella. Gene. 2005, 353: 189-199. 10.1016/j.gene.2005.04.025.
CAS
PubMed
Google Scholar
Sironen A, Kotaja N, Mulhern H, Wyatt TA, Sisson JH, Pavlik JA, Miiluniemi M, Fleming MD, Lee L: Loss of SPEF2 function in mice results in spermatogenesis defects and primary ciliary dyskinesia. Biol Reprod. 2011, 85 (4): 690-701. 10.1095/biolreprod.111.091132.
PubMed Central
CAS
PubMed
Google Scholar
Yukitake H, Furusawa M, Taira T, Iguchi-Ariga SMM, Ariga H: AAT-1, a novel testis-specific AMY-1-binding protein, forms a quaternary complex with AMY-1, A-kinase Anchor Protein 84, and a regulatory subunit of cAMP-dependent protein kinase and is phosphorylated by its kinase. J Biol Chem. 2002, 277 (47): 45480-45492. 10.1074/jbc.M206201200.
CAS
PubMed
Google Scholar
Alekseev OM, Richardson RT, O’rand MG: Linker histones stimulate HSPA2 ATPase activity through NASP binding and inhibit CDC2/Cyclin B1 complex formation during meiosis in the mouse. Biol Reprod. 2009, 81 (4): 739-748. 10.1095/biolreprod.109.076497.
PubMed Central
CAS
PubMed
Google Scholar
Takahashi T, Tanaka H, Iguchi N, Kitamura K, Chen Y-F, Maekawa M, Nishimura H, Ohta H, Miyagawa Y, Matsumiya K, et al: Rosbin: A novel homeobox-like protein gene expressed exclusively in round spermatids. Biol Reprod. 2004, 70 (5): 1485-1492. 10.1095/biolreprod.103.026096.
CAS
PubMed
Google Scholar
Kanazawa R, Komori S, Sakata K, Tanaka H, Sawai H, Tsuji Y, Koyama K: Isolation and characterization of a human sperm antigen gene h-Sp-1. Int J Androl. 2003, 26: 226-235. 10.1046/j.1365-2605.2003.00418.x.
CAS
PubMed
Google Scholar
Liu N, Qiao Y, Cai C, Lin W, Zhang J, Miao S, Zong S, Koide SS, Wang L: A sperm component, HSD-3.8 (SPAG1), interacts with G-protein beta 1 subunit and activates extracellular signal-regulated kinases (ERK). Front Biosci. 2006, 11: 1679-1689. 10.2741/1913.
CAS
PubMed
Google Scholar
Wu H, Chen Y, Miao S, Zhang C, Zong S, Koide SS, Wang L: Sperm associated antigen 8 (SPAG8), a novel regulator of activator of CREM in testis during spermatogenesis. FEBS Lett. 2010, 584 (13): 2807-2815. 10.1016/j.febslet.2010.05.016.
CAS
PubMed
Google Scholar
Greenbaum MP, Yan W, Wu M, Lin Y, Agno J, Sharma M, Braun RE, Rajkovic A, Matzuk MM: TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci. 2006, 103 (13): 4982-4987. 10.1073/pnas.0505123103.
PubMed Central
CAS
PubMed
Google Scholar
Mondal G, Ohashi A, Yang L, Rowley M, Couch Fergus J: Tex14, a Plk1-regulated protein, is required for kinetochore-microtubule attachment and regulation of the spindle assembly checkpoint. Molecular Cell. 2012, 45 (5): 680-695. 10.1016/j.molcel.2012.01.013.
PubMed Central
CAS
PubMed
Google Scholar
Xu B, Hao Z, Jha KN, Zhang Z, Urekar C, Digilio L, Pulido S, Strauss JF, Flickinger CJ, Herr JC: Targeted deletion of Tssk1 and 2 causes male infertility due to haploinsufficiency. Dev Biol. 2008, 319: 211-222. 10.1016/j.ydbio.2008.03.047.
PubMed Central
CAS
PubMed
Google Scholar
Daniel R, Daniels E, He Z, Bateman A: Progranulin (acrogranin/PC cell-derived growth factor/granulin-epithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Dev Dyn. 2003, 227 (4): 593-599. 10.1002/dvdy.10341.
CAS
PubMed
Google Scholar
Lee YJ, Lee Y, Chung JH: An intronless gene encoding a poly(A) polymerase is specifically expressed in testis. FEBS Lett. 2000, 487: 287-292. 10.1016/S0014-5793(00)02367-X.
CAS
PubMed
Google Scholar
Liu Y, Black J, Kisiel N, Kulesz-Martin MF: SPAF, a new AAA-protein specific to early spermatogenesis and malignant conversion. Oncogene. 2000, 19: 1579-1588. 10.1038/sj.onc.1203442.
CAS
PubMed
Google Scholar
Zhang X, Liu H, Zhang Y, Qiao Y, Miao S, Want L, Zhang J, Zong S, Koide SS: A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis. J Mol Med. 2003, 81 (81): 380-387.
CAS
PubMed
Google Scholar
Deng Y, Hu L-S, Lu G-X: Expression and identification of a novel apoptosis gene Spata17 (MSRG-11) in mouse spermatogenic cells. Acta Biochim Biophys Sinica. 2006, 38 (1): 37-45. 10.1111/j.1745-7270.2006.00125.x.
CAS
Google Scholar
Bornstein C, Brosh R, Molchadsky A, Madar S, Kogan-Sakin I, Goldstein I, Chakravarti D, Flores ER, Goldfinger N, Sarig R, et al: SPATA18, a Spermatogenesis-Associated Gene, is a novel transcriptional target of p53 and p63. Mol Cell Biol. 2011, 31 (8): 1679-1689. 10.1128/MCB.01072-10.
PubMed Central
CAS
PubMed
Google Scholar
Senoo M, Hoshino S, Mochida N, Matsumura Y, Habu S: Identification of a Novel Protein p59scr, Which Is Expressed at Specific Stages of Mouse Spermatogenesis. Biochem Biophys Res Commun. 2002, 292 (4): 992-998. 10.1006/bbrc.2002.6769.
CAS
PubMed
Google Scholar
Song X, Li Y, Shi Y, Hu X, Hu Z, Han C, Liu Y: Cloning and characterization of a novel spermiogenesis-related gene, T6441, in rat testis. Front Biosci. 2006, 11: 143-150. 10.2741/1787.
CAS
PubMed
Google Scholar
Oh C, Aho H, Shamsadin R, Nayernia K, Muller C, Sancken U, Szpirer C, Engel W, Adham IM: Characterization, expression pattern and chromosomal localization of the spermatogenesis associated 6 gene (Spata6). Mol Hum Reprod. 2003, 9 (6): 321-330. 10.1093/molehr/gag047.
CAS
PubMed
Google Scholar
Li Y, Maines JZ, Tastan OY, Mckearin DM, Buszczak M: Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling. Development. 2012, 139 (9): 1547-1556. 10.1242/dev.077412.
PubMed Central
CAS
PubMed
Google Scholar
Liu N, Han H, Lasko P: Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes Dev. 2009, 23 (23): 2742-2752. 10.1101/gad.1820709.
PubMed Central
CAS
PubMed
Google Scholar
Quenet D, Mark M, Govin J, van Dorsselear A, Schreiber V, Khochbin S, Dantzer F: Parp2 is required for the differentiation of post-meiotic germ cells: identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2. Experimental Cell Research. 2009, 315 (16): 2824-2834. 10.1016/j.yexcr.2009.07.003.
CAS
PubMed
Google Scholar
Chi MN, Auriol J, Jegou B, Kontoyiannis DL, Turner JMA, De Rooij DG, Morello D: The RNA-binding protein ELAVL1/HuR is essential for mouse spermatogenesis, acting both at meiotic and postmeiotic stages. Molecular Biology of the Cell. 2011, 22 (16): 2875-2885. 10.1091/mbc.E11-03-0212.
PubMed Central
CAS
PubMed
Google Scholar
Parfitt DA, Michael GJ, Vermeulen EGM, Prodromou NV, Webb TR, Gallo J-M, Cheetham ME, Nicoll WS, Blatch GL, Chapple JP: The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1. Hum Mol Genet. 2009, 18 (9): 1556-1565. 10.1093/hmg/ddp067.
PubMed Central
CAS
PubMed
Google Scholar
Kruse E, Uehlein N, Kaldenhoff R: The aquaporins. Genome Biol. 2006, 7 (2): 206-10.1186/gb-2006-7-2-206.
PubMed Central
PubMed
Google Scholar
Britton C, Murray L: Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans. Journal of Cell Science. 2004, 117 (21): 5133-5143. 10.1242/jcs.01387.
CAS
PubMed
Google Scholar
Gilbert JJ: Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshw Biol. 2004, 49: 1505-1515. 10.1111/j.1365-2427.2004.01282.x.
Google Scholar
Parsell DA, Lindquist S: The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993, 27: 437-496. 10.1146/annurev.ge.27.120193.002253.
CAS
PubMed
Google Scholar
Caprioli M, Katholm AK, Melone G, Ramlov H, Ricci C, Santo N: Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comparative Biochemistry and Physiology. 2004, 139: 527-532. 10.1016/j.cbpb.2004.10.019.
PubMed
Google Scholar
Erkut C, Penkov S, Khesbak H, Vorkel D, Verbavatz J-M, Fahmy K, Kurzchalia Teymuras V: Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol. 2011, 21: 1331-1336. 10.1016/j.cub.2011.06.064.
CAS
PubMed
Google Scholar
Denekamp NY, Reinhardt R, Kube M, Lubzens E: Late Embryogenesis Abundant (LEA) Proteins in nondesiccated, encysted, and diapausing embryos of rotifers. Biol Reprod. 2010, 82 (4): 714-724. 10.1095/biolreprod.109.081091.
CAS
PubMed
Google Scholar
Warner AH, Miroshnychenko O, Koxarova A, Vacratsis PO, MacRae TH, Kim J, Clegg JS: Evidence for multiple group 1 late embryogenesis abundant (LEA) proteins in encysted embryos of Artemia and their organelles. J Biochem. 2010, 148: 581-592. 10.1093/jb/mvq091.
CAS
PubMed
Google Scholar
Zamudio N, Bourc’his D: Transposable elements in the mammalian germline: a comfortable niche or a deadly trap?. Heredity. 2010, 105 (1): 92-104. 10.1038/hdy.2010.53.
CAS
PubMed
Google Scholar
Bao J, Yan W: Male germline control of transposable elements. Biol Reprod. 2012, 86 (5): 162-10.1095/biolreprod.111.095463. 162
PubMed Central
PubMed
Google Scholar
Mostowy S, Cossart P: Septins: The fourth component of the cytoskeleton. Nature Publishing Group. 2012, 13 (3): 183-194.
CAS
Google Scholar
Ricci C: Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia. 1998, 387/388: 321-326.
Google Scholar
Krisko A, Leroy M, Radman M, Meselson M: Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci USA. 2012, 109 (7): 2354-2357. 10.1073/pnas.1119762109.
PubMed Central
CAS
PubMed
Google Scholar
Kunz C, Schar P: Meiotic recombination: sealing the partnership at the junction. Curr Biol. 2004, 14: R962-R964. 10.1016/j.cub.2004.10.043.
CAS
PubMed
Google Scholar
Gilbert JJ: Rotifera. Reproductive Biology of Invertebrates. 1989, 4 part A: 179-199.
Google Scholar
Schurko AM, Logsdon JM, Eads BD: Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol Biol. 2009, 9 (78): 1-27.
Google Scholar
Hiruta C, Nishida C, Tochinai S: Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res. 2010, 18: 833-840. 10.1007/s10577-010-9159-2.
CAS
PubMed
Google Scholar