Ponsuksili S, Murani E, Phatsara C, Schwerin M, Schellander K, Wimmers K: Porcine muscle sensory attributes associate with major changes in gene networks involving CAPZB, ANKRD1, and CTBP2. Funct Integr Genomics. 2009, 9: 455-471. 10.1007/s10142-009-0131-1.
Article
CAS
PubMed
Google Scholar
Ponsuksili S, Murani E, Phatsara C, Schwerin M, Schellander K, Wimmers K: Expression quantitative trait loci analysis of genes in porcine muscle by quantitative real time RT-PCR compared to microarray data. Heredity. 2010, 105 (3): 309-317. 10.1038/hdy.2010.5.
Article
CAS
PubMed
Google Scholar
Sellier P: The future role of molecular genetics in the control of meat production and meat quality. Meat Sci. 1994, 36 (1–2): 29-44.
Article
CAS
PubMed
Google Scholar
Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J: The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010, 62 (3): 196-220. 10.1016/j.vascn.2010.05.009.
Article
CAS
PubMed
Google Scholar
Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ: Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012, 491 (7424): 393-398. 10.1038/nature11622.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ponsuksili S, Jonas E, Murani E, Phatsara C, Srikanchai T, Walz C, Schwerin M, Schellander K, Wimmers K: Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. BMC Genomics. 2008, 9: 367-10.1186/1471-2164-9-367.
Article
PubMed Central
PubMed
Google Scholar
Ponsuksili S, Murani E, Phatsara C, Jonas E, Walz C, Schwerin M, Schellander K, Wimmers K: Expression Profiling of Muscle Reveals Transcripts Differentially Expressed in Muscle That Affect Water-Holding Capacity of Pork. J Agric Food Chem. 2008, 56: 10311-10317. 10.1021/jf800881y.
Article
CAS
PubMed
Google Scholar
Ponsuksili S, Murani E, Brand B, Schwerin M, Wimmers K: Integrating expression profiling and whole-genome association for dissection of fat traits in a porcine model. J Lipid Res. 2011, 52 (4): 668-678. 10.1194/jlr.M013342.
Article
PubMed Central
CAS
PubMed
Google Scholar
Callis TE, Deng Z, Chen JF, Wang DZ: Muscling through the microRNA world. Exp Biol Med. 2008, 233 (2): 131-138. 10.3181/0709-MR-237.
Article
CAS
Google Scholar
Huang TH, Zhu MJ, Li XY, Zhao SH: Discovery of Porcine microRNAs and Profiling from Skeletal Muscle Tissues during Development. PLoS One. 2008, 3 (9): e3225-10.1371/journal.pone.0003225.
Article
PubMed Central
PubMed
Google Scholar
van Rooij E, Liu N, Olson EN: MicroRNAs flex their muscles. Trends in Genet. 2008, 24 (4): 159-166. 10.1016/j.tig.2008.01.007.
Article
CAS
Google Scholar
Walden TB, Timmons JA, Keller P, Nedergaard J, Cannon B: Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J Cell Physiol. 2009, 218 (2): 444-449. 10.1002/jcp.21621.
Article
CAS
PubMed
Google Scholar
Xie H, Lim B, Lodish HF: MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 2009, 58 (5): 1050-1057. 10.2337/db08-1299.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Fernández-Real JM: MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One. 2010, 5 (2): e9022-10.1371/journal.pone.0009022.
Article
PubMed Central
PubMed
Google Scholar
Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009, 10 (2): 126-139. 10.1038/nrm2632.
Article
CAS
PubMed
Google Scholar
Winter J, Jung S, Keller S, Gregory RI, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009, 11 (3): 228-234. 10.1038/ncb0309-228.
Article
CAS
PubMed
Google Scholar
Fang Z, Rajewsky N: The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS ONE. 2011, 6 (3): e18067-10.1371/journal.pone.0018067.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466 (7308): 835-840. 10.1038/nature09267.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peng X, Li Y, Walters KA, Rosenzweig ER, Lederer SL, Aicher LD, Proll S, Katze MG: Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics. 2009, 10: 373-10.1186/1471-2164-10-373.
Article
PubMed Central
PubMed
Google Scholar
Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, Oza JH, Yao M, Juan D, Liou LS, Ganesan S, Levine AJ, Rathmell WK, Bhanot GV: Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol. 2010, 4: 51-10.1186/1752-0509-4-51.
Article
PubMed Central
PubMed
Google Scholar
Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK: Variations in DNA elucidate molecular networks that cause disease. Nature. 2008, 452: 429-435. 10.1038/nature06757.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Patel S: Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci USA. 2006, 103: 12741-12746. 10.1073/pnas.0605457103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008, 9 (1): 559-10.1186/1471-2105-9-559.
Article
Google Scholar
Saris CG, Horvath S, van Vught PW, van Es MA, Blauw HM, Fuller TF, Langfelder P, DeYoung J, Wokke JH, Veldink JH, van den Berg LH, Ophoff RA: Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genomics. 2009, 10: 405-10.1186/1471-2164-10-405.
Article
PubMed Central
PubMed
Google Scholar
Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T, Aguilar-Salinas C, Pajukanta P: A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet. 2009, 5 (9): e1000642-10.1371/journal.pgen.1000642.
Article
PubMed Central
PubMed
Google Scholar
Farber CR: Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data. J Bone Miner Res. 2010, 25 (11): 2359-2367. 10.1002/jbmr.138.
Article
CAS
PubMed
Google Scholar
DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA: Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One. 2011, 6 (10): e26683-10.1371/journal.pone.0026683.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lancu OD, Darakjian P, Malmanger B, Walter NA, McWeeney S, Hitzemann R: Gene networks and haloperidol-induced catalepsy. Genes Brain Behav. 2012, 11 (1): 29-37. 10.1111/j.1601-183X.2011.00736.x.
Article
Google Scholar
Rosenvold K, Andersen HJ: Factors of significance, for pork quality - a review. Meat science. 2003, 64: 219-237. 10.1016/S0309-1740(02)00186-9.
Article
PubMed
Google Scholar
Figueiredo PA, Mota MP, Appell HJ, Duarte JA: The role of mitochondria in aging of skeletal muscle. Biogerontology. 2008, 9 (2): 67-84. 10.1007/s10522-007-9121-7.
Article
CAS
PubMed
Google Scholar
Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M: Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010, 29 (10): 1774-1785. 10.1038/emboj.2010.60.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dorn GW: Mitochondrial dynamics in heart disease. Biochim Biophys Acta. 2013, 1833 (1): 233-241. 10.1016/j.bbamcr.2012.03.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Irwin MH, Parameshwaran K, Pinkert CA: Mouse models of mitochondrial complex I dysfunction. Int J Biochem Cell Biol. 2013, 45 (1): 34-40. 10.1016/j.biocel.2012.08.009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bee G, Anderson AL, Lonergan SM, Huff-Lonergan E: Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork. Meat Sci. 2007, 76 (2): 359-365. 10.1016/j.meatsci.2006.12.004.
Article
CAS
PubMed
Google Scholar
Huff-Lonergan E, Lonergan SM: Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71 (1): 194-204. 10.1016/j.meatsci.2005.04.022.
Article
CAS
PubMed
Google Scholar
Camacho Vanegas O, Bertini E, Zhang RZ, Petrini S, Minosse C, Sabatelli P, Giusti B, Chu ML, Pepe G: Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci USA. 2001, 98 (13): 7516-7521. 10.1073/pnas.121027598.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lampe AK, Bushby KM: Collagen VI related muscle disorders. J Med Genet. 2005, 42 (9): 673-685. 10.1136/jmg.2002.002311.
Article
PubMed Central
CAS
PubMed
Google Scholar
Merlini L, Martoni E, Grumati P, Sabatelli P, Squarzoni S, Urciuolo A, Ferlini A, Gualandi F, Bonaldo P: Autosomal recessive myosclerosis myopathy is a collagen VI disorder. Neurology. 2008, 71 (16): 1245-1253. 10.1212/01.wnl.0000327611.01687.5e.
Article
CAS
PubMed
Google Scholar
Gualandi F, Urciuolo A, Martoni E, Sabatelli P, Squarzoni S, Bovolenta M, Messina S, Mercuri E, Franchella A, Ferlini A, Bonaldo P, Merlini L: Autosomal recessive Bethlem myopathy. Neurology. 2009, 73 (22): 1883-1891. 10.1212/WNL.0b013e3181c3fd2a.
Article
CAS
PubMed
Google Scholar
Allamand V, Briñas L, Richard P, Stojkovic T, Quijano-Roy S, Bonne G: ColVI myopathies: where do we stand, where do we go?. Skelet Muscle. 2011, 23 (1): 30-
Article
Google Scholar
Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P: Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet. 2003, 35 (4): 367-371. 10.1038/ng1270.
Article
CAS
PubMed
Google Scholar
Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P: Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med. 2010, 16 (11): 1313-1320. 10.1038/nm.2247.
Article
CAS
PubMed
Google Scholar
Friedman RC, Farh KKH, Burge CB, Bartel DP: Most mammalian mrnas are conserved targets of micrornas. Genome Res. 2009, 19 (1): 92-105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H: Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005, 33 (8): 2697-2706. 10.1093/nar/gki567.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanzer A, Stadler PF: Molecular evolution of a microrna cluster. J Mol Biol. 2004, 339 (2): 327-335. 10.1016/j.jmb.2004.03.065.
Article
CAS
PubMed
Google Scholar
Williams AH, Liu N, van Rooij E, Olson EN: MicroRNA control of muscle development and disease. Curr Opin Cell Biol. 2009, 21 (3): 461-469. 10.1016/j.ceb.2009.01.029.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007, 104 (43): 17016-17021. 10.1073/pnas.0708115104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eisenberg I, Alexander MS, Kunkel LM: miRNAS in normal and diseased skeletal muscle. J Cell Mol Med. 2009, 13 (1): 2-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cardinali B, Castellani L, Fasanaro P, Basso A, Alema S, Martelli F, Falcone G: Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One. 2009, 4 (10): e7607-10.1371/journal.pone.0007607.
Article
PubMed Central
PubMed
Google Scholar
Greco S, Perfetti A, Fasanaro P, Cardani R, Capogrossi MC, Meola G, Martelli F: Deregulated MicroRNAs in Myotonic Dystrophy Type 2. PLoS One. 2012, 7 (6): e39732-10.1371/journal.pone.0039732.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie SS, Huang TH, Shen Y, Li XY, Zhang XX, Zhu MJ, Qin HY, Zhao SH: Identification and characterization of microRNAs from porcine skeletal muscle. Anim Genet. 2010, 41 (2): 179-190. 10.1111/j.1365-2052.2009.01991.x.
Article
CAS
PubMed
Google Scholar
Liu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu Y, Voelker KA, Grange RW, Richardson JA, Bassel-Duby R, Olson EN: Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy. J Clin Invest. 2011, 121 (8): 3258-3268. 10.1172/JCI46267.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang L, Chen X, Zheng Y, Li F, Lu Z, Chen C, Liu J, Wang Y, Peng Y, Shen Z, Gao J, Zhu M, Chen H: MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp Cell Res. 2012, 318 (18): 2324-2334. 10.1016/j.yexcr.2012.06.018.
Article
CAS
PubMed
Google Scholar
Li G, Wu Z, Li X, Ning X, Li Y, Yang G: Biological role of microRNA-103 based on expression profile and target genes analysis in pigs. Mol Biol Rep. 2011, 38 (7): 4777-4786. 10.1007/s11033-010-0615-z.
Article
CAS
PubMed
Google Scholar
McGregor RA, Choi MS: microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med. 2011, 11 (4): 304-316. 10.2174/156652411795677990.
Article
PubMed Central
CAS
PubMed
Google Scholar
Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M: MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011, 474 (7353): 649-653. 10.1038/nature10112.
Article
CAS
PubMed
Google Scholar
Grimson A, Farh KKH, Johnston KW, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing. Mol Cell. 2007, 27 (1): 91-105. 10.1016/j.molcel.2007.06.017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mazière P, Enright AJ: Prediction of microRNA targets. Drug Discov Today. 2007, 12 (11–12): 452-458.
Article
PubMed
Google Scholar
Rajan S, Chu Pham Dang H, Djambazian H, Zuzan H, Fedyshyn Y, Ketela T, Moffat J, Hudson TJ, Sladek R: Analysis of early C2C12 myogenesis identifies stably and differentially expressed transcriptional regulators whose knock-down inhibits myoblast differentiation. Physiol Genomics. 2012, 44 (2): 183-197. 10.1152/physiolgenomics.00093.2011.
Article
CAS
PubMed
Google Scholar
Reiner G, Heinricy L, Müller E, Geldermann H, Dzapo V: Indications of associations of the porcine FOS proto-oncogene with skeletal muscle fibre traits. Anim Genet. 2002, 33 (1): 49-55. 10.1046/j.1365-2052.2002.00805.x.
Article
CAS
PubMed
Google Scholar
Banduseela VC, Ochala J, Chen YW, Göransson H, Norman H, Radell P, Eriksson LI, Hoffman EP, Larsson L: Gene expression and muscle fiber function in a porcine ICU model. Physiol Genomics. 2009, 39 (3): 141-159. 10.1152/physiolgenomics.00026.2009.
Article
CAS
PubMed
Google Scholar
Banduseela VC, Chen YW, Göransson Kultima H, Norman HS, Aare S, Radell P, Eriksson LI, Hoffman EP, Larsson L: Impaired autophagy, chaperone expression and protein synthesis in response to critical illness interventions in porcine skeletal muscle. Physiol Genomics. 2013, 45 (12): 477-486. 10.1152/physiolgenomics.00141.2012.
Article
CAS
PubMed
Google Scholar
Don J, Stelzer G: The expanding family of CREB/CREM transcription factors that are involved with spermatogenesis. Mol Cell Endocrinol. 2002, 187 (1–2): 115-124.
Article
CAS
PubMed
Google Scholar
Müller FU, Lewin G, Baba HA, Bokník P, Fabritz L, Kirchhefer U, Kirchhof P, Loser K, Matus M, Neumann J, Riemann B, Schmitz W: Heart-directed expression of a human cardiac isoform of cAMP-response element modulator in transgenic mice. J Biol Chem. 2005, 280 (8): 6906-6914. 10.1074/jbc.M407864200.
Article
PubMed
Google Scholar
Wu X, Jin W, Liu X, Fu H, Gong P, Xu J, Cui G, Ni Y, Ke K, Gao Z, Gao Y: Cyclic AMP response element modulator-1 (CREM-1) involves in neuronal apoptosis after traumatic brain injury. J Mol Neurosci. 2012, 47 (2): 357-367. 10.1007/s12031-012-9761-1.
Article
CAS
PubMed
Google Scholar
Juang YT, Wang Y, Solomou EE, Li Y, Mawrin C, Tenbrock K, Kyttaris VC, Tsokos GC: Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J Clin Invest. 2005, 115 (4): 996-1005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu WD, Zhang YJ, Wang W, Li R, Pan HF, Ye DQ: Role of CREM in systemic lupus erythematosus. Cell Immunol. 2012, 276 (1–2): 10-15.
Article
CAS
PubMed
Google Scholar
Nantel F, Monaco L, Foulkes NS, Masquilier D, LeMeur M, Henriksén K, Dierich A, Parvinen M, Sassone-Corsi P: Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature. 1996, 380 (6570): 159-162. 10.1038/380159a0.
Article
CAS
PubMed
Google Scholar
Kosir R, Juvan P, Perse M, Budefeld T, Majdic G, Fink M, Sassone-Corsi P, Rozman D: Novel insights into the downstream pathways and targets controlled by transcription factors CREM in the testis. PLoS One. 2012, 7 (2): e31798-10.1371/journal.pone.0031798.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lonergan EH, Zhang W, Lonergan SM: Biochemistry of postmortem muscle - Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86 (1): 184-195. 10.1016/j.meatsci.2010.05.004.
Article
PubMed
Google Scholar
Xu J, Liao X, Wong C: Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer. 2010, 126 (4): 1029-1035.
CAS
PubMed
Google Scholar
Xu J, Liao X, Lu N, Liu W, Wong CW: Chromatin-modifying drugs induce miRNA-153 expression to suppress Irs-2 in glioblastoma cell lines. Int J Cancer. 2011, 129 (10): 2527-2531. 10.1002/ijc.25917.
Article
CAS
PubMed
Google Scholar
Agarwal P, Srivastava R, Srivastava AK, Ali S, Datta M: miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. Biochim Biophys Acta. 2013, 1832 (8): 1294-1303. 10.1016/j.bbadis.2013.03.021.
Article
CAS
PubMed
Google Scholar
Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, Kawai T, Hashimoto S, Kobayashi T, Sato M, Tokuyama K, Nishimura S, Tsunoda M, Ide T, Murakami K, Yamazaki T, Ezaki O, Kawamura K, Masuda H, Moroi M, Sugi K, Oike Y, Shimokawa H, Yanagihara N, Tsutsui M, Terauchi Y, Tobe K, Nagai R, Kamata K, Inoue K, Kodama T, Ueki K, Kadowaki T: Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011, 13 (3): 294-307. 10.1016/j.cmet.2011.01.018.
Article
CAS
PubMed
Google Scholar
Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundström K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L: A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science. 2000, 288 (5469): 1248-1251. 10.1126/science.288.5469.1248.
Article
CAS
PubMed
Google Scholar
Andersson L: Identification and characterization of AMPK gamma 3 mutations in the pig. Biochem Soc Trans. 2003, 31 (Pt 1): 232-235.
Article
CAS
PubMed
Google Scholar
Li P, Jiao J, Gao G: Prabhakar BS. Control of mitochondrial activity by miRNAs. J Cell Biochem. 2012, 113 (4): 1104-1110. 10.1002/jcb.24004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE, Kaplan BB: MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci. 2008, 28 (47): 12581-12590. 10.1523/JNEUROSCI.3338-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aschrafi A, Kar AN, Natera-Naranjo O, Macgibeny MA, Gioio AE, Kaplan BB: MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci. 2012, Jul 8. [Epub ahead of print]: PMID:22773120
Google Scholar
Nishi H, Ono K, Iwanaga Y, Horie T, Nagao K, Takemura G, Kinoshita M, Kuwabara Y, Mori RT, Hasegawa K, Kita T, Kimura T: MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J Biol Chem. 2010, 285 (7): 4920-4930. 10.1074/jbc.M109.082610.
Article
PubMed Central
CAS
PubMed
Google Scholar
Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang Y, Wheelan SJ, Murphy E, Steenbergen C: Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 2012, 110 (12): 1596-1603. 10.1161/CIRCRESAHA.112.267732.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gandellini P, Profumo V, Casamichele A, Fenderico N, Borrelli S, Petrovich G, Santilli G, Callari M, Colecchia M, Pozzi S, De Cesare M, Folini M, Valdagni R, Mantovani R, Zaffaroni N: miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death Differ. 2012, 19 (11): 1750-1760. 10.1038/cdd.2012.56. PMID: 22555458
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB: Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009, 284 (23): 15676-15684. 10.1074/jbc.M809787200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009, 104 (2): 170-178. 10.1161/CIRCRESAHA.108.182535.
Article
CAS
PubMed
Google Scholar
Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G, Young BM, De Langhe SP, Bellusci S, Shi W, Parnigotto PP, Warburton D: Mir-17 family of micrornas controls fgf10-mediated embryonic lung epithelial branching morphogenesis through mapk14 and stat3 regulation of e-cadherin distribution. Dev Biol. 2009, 333 (2): 238-250. 10.1016/j.ydbio.2009.06.020.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee YB, Bantounas I, Lee DY, Phylactou L, Caldwell MA, Uney JB: Twist-1 regulates the mir-199a/214 cluster during development. Nucleic Acids Res. 2009, 37 (1): 123-128. 10.1093/nar/gkn920.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huynh TP, Muráni E, Maak S, Ponsuksili S, Wimmers K: UBE3B and ZRANB1 polymorphisms and transcript abundance are associated with water holding capacity of porcine M. longissimus dorsi. Meat Sci. 2013, 95 (2): 166-172. 10.1016/j.meatsci.2013.04.033.
Article
CAS
PubMed
Google Scholar
Nielsen S, Scheele C, Yfanti C, Akerström T, Nielsen AR, Pedersen BK, Laye MJ: Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010, 588 (Pt 20): 4029-4037.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang P, Chen X, Fan M: Signaling mechanisms involved in disuse muscle atrophy. Med Hypotheses. 2007, 69 (2): 310-321. 10.1016/j.mehy.2006.11.043.
Article
PubMed
Google Scholar
Jackman RW, Kandarian SC: The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2004, 287 (4): C834-C843. 10.1152/ajpcell.00579.2003.
Article
CAS
PubMed
Google Scholar
Honikel KO: Wasserbindungsvermögen von Fleisch. Mitteilungsblatt der BAFF. 1986, 6: 7150-7154.
Google Scholar
Naraballobh W, Chomdej S, Murani E, Wimmers K, Ponsuksili S: Annotation and in silico localization of the Affymetrix GeneChip Porcine Genome Array. Arch Tierz. 2010, 53: 230-238.
CAS
Google Scholar
Ponsuksili S, Du Y, Murani E, Schwerin M, Wimmers K: Elucidating molecular networks that either affect or respond to plasma cortisol concentration in target tissues of liver and muscle. Genetics. 2012, 192 (3): 1109-1122. 10.1534/genetics.112.143081.
Article
PubMed Central
CAS
PubMed
Google Scholar
Storey JD, Tibshirani R: Statistical significance for genome-wide experiments. PNAS. 2003, 100: 9440-9445. 10.1073/pnas.1530509100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005, 4: 17-
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37 (1): 1-13. 10.1093/nar/gkn923.
Article
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009, 4 (1): 44-57.
Article
CAS
Google Scholar
Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 2004, 10: 1507-1517. 10.1261/rna.5248604.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035.
Article
CAS
PubMed
Google Scholar