Crawford NM: Nitrate: nutrient and signal for plant growth. Plant Cell. 1995, 7: 859-868.
Article
PubMed Central
CAS
PubMed
Google Scholar
Redinbaugh MG, Campbell WH: Higher plant responses to environmental nitrate. Physiol Plant. 1991, 82: 640-650. 10.1111/j.1399-3054.1991.tb02958.x.
Article
CAS
Google Scholar
Stitt M: Nitrate regulation of metabolism and growth. Curr Opin Plant Biol. 1999, 2: 178-186. 10.1016/S1369-5266(99)80033-8.
Article
CAS
PubMed
Google Scholar
Crawford NM, Glass ADM: Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 1998, 3: 389-395. 10.1016/S1360-1385(98)01311-9.
Article
Google Scholar
Vidal EA, Gutiérrez RA: A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Op Plant Biol. 2008, 11: 521-529. 10.1016/j.pbi.2008.07.003.
Article
CAS
Google Scholar
Zhang H, Rong H, Pilbeam D: Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot. 2007, 58: 2329-2338. 10.1093/jxb/erm114.
Article
CAS
PubMed
Google Scholar
Forde BG, Walch-Liu P: Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ. 2009, 32: 682-693. 10.1111/j.1365-3040.2008.01927.x.
Article
CAS
PubMed
Google Scholar
Krouk G, Mirowski P, LeCun Y, Shasha D, Coruzzi G: Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biol. 2010, 11: R123-10.1186/gb-2010-11-12-r123.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang R, Okamoto M, Xing X, Crawford NM: Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol. 2003, 132: 556-567. 10.1104/pp.103.021253.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford NM: Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol. 2004, 136: 2512-2522. 10.1104/pp.104.044610.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang R, Xing X, Crawford N: Nitrite acts as transcriptome signal at micromolar concentrations in Arabidopsis roots. Plant Physiol. 2007, 145: 1735-1745. 10.1104/pp.107.108944.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang R, Xing X, Wang Y, Tran A, Crawford NM: A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol. 2009, 151: 472-478. 10.1104/pp.109.140434.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blencowe BJ, Ahmad S, Lee LJ: Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev. 2009, 23: 1379-1386. 10.1101/gad.1788009.
Article
CAS
PubMed
Google Scholar
Malone J, Oliver B: Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011, 9: 34-10.1186/1741-7007-9-34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marguerat S, Bähler J: RNA-seq: from technology to biology. Cell Mol Life Sci. 2010, 67: 569-579. 10.1007/s00018-009-0180-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morozova O, Hirst M, Marra MA: Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet. 2009, 10: 135-151. 10.1146/annurev-genom-082908-145957.
Article
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5: 621-628. 10.1038/nmeth.1226.
Article
CAS
PubMed
Google Scholar
Wang Z: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009, 10: 57-63. 10.1038/nrg2484.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS One. 2007, 2: e219-10.1371/journal.pone.0000219.
Article
PubMed Central
PubMed
Google Scholar
Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE: Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet. 2006, 38: 721-725. 10.1038/ng1804.
Article
CAS
PubMed
Google Scholar
Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC: Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 2007, 5: e57-10.1371/journal.pbio.0050057.
Article
PubMed Central
PubMed
Google Scholar
Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS, Henderson IR, Jacobsen SE, Wang W, Green PJ, Meyers BC: MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res. 2006, 16: 1276-1288. 10.1101/gr.5530106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu A-L, Zhao Y, McDonald H, Zeng T, Hirst M: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008, 18: 610-621. 10.1101/gr.7179508.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006, 20: 3407-3425. 10.1101/gad.1476406.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huijser P, Schmid M: The control of developmental phase transitions in plants. Development. 2011, 138: 4117-4129. 10.1242/dev.063511.
Article
CAS
PubMed
Google Scholar
Khan G, Declerck M, Sorin C, Hartmann C, Crespi M, Lelandais-Brière C: MicroRNAs as regulators of root development and architecture. Plant Mol Biol. 2011, 77: 47-58. 10.1007/s11103-011-9793-x.
Article
CAS
PubMed
Google Scholar
Martin RC, Liu P-P, Goloviznina NA, Nonogaki H: microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot. 2010, 61: 2229-2234. 10.1093/jxb/erq063.
Article
CAS
PubMed
Google Scholar
Ruiz-Ferrer V, Voinnet O: Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol. 2009, 60: 485-510. 10.1146/annurev.arplant.043008.092111.
Article
CAS
PubMed
Google Scholar
Sunkar R, Li Y-F, Jagadeeswaran G: Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012, 17: 196-203. 10.1016/j.tplants.2012.01.010.
Article
CAS
PubMed
Google Scholar
Chiou T-J, Aung K, Lin S-I, Wu C-C, Chiang S-F, Su C-l: Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell. 2006, 18: 412-421. 10.1105/tpc.105.038943.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K: A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol. 2005, 15: 2038-2043. 10.1016/j.cub.2005.10.016.
Article
CAS
PubMed
Google Scholar
Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T: Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J. 2009, 57: 313-321. 10.1111/j.1365-313X.2008.03690.x.
Article
CAS
PubMed
Google Scholar
Liang G, He H, Yu D: Identification of Nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One. 2012, 7: e48951-10.1371/journal.pone.0048951.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible W-R: Identification of nutrient-responsive Arabidopsis and Rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 2009, 150: 1541-1555. 10.1104/pp.109.139139.
Article
PubMed Central
PubMed
Google Scholar
Zhao M, Ding H, Zhu J-K, Zhang F, Li W-X: Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol. 2011, 190: 906-915. 10.1111/j.1469-8137.2011.03647.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li W-X: Cloning and characterization of Maize miRNAs involved in responses to nitrogen deficiency. PLoS One. 2012, 7: e29669-10.1371/journal.pone.0029669.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA: Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2010, 107: 4477-4482. 10.1073/pnas.0909571107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hsieh L-C, Lin S-I, Shih AC-C, Chen J-W, Lin W-Y, Tseng C-Y, Li W-H, Chiou T-J: Uncovering small RNA-mediated responses to phosphate-deficiency in Arabidopsis by deep sequencing. Plant Physiol. 2009, 151: 2120-2132. 10.1104/pp.109.147280.
Article
PubMed Central
PubMed
Google Scholar
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J: Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010, 62: 960-976.
CAS
PubMed
Google Scholar
Li F, Orban R, Baker B: SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J. 2012, 70: 891-901. 10.1111/j.1365-313X.2012.04922.x.
Article
CAS
PubMed
Google Scholar
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V: Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res. 2005, 15: 78-91. 10.1101/gr.2908205.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004, 14: 787-799. 10.1016/j.molcel.2004.05.027.
Article
CAS
PubMed
Google Scholar
Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39: D152-D157. 10.1093/nar/gkq1027.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD: Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA. 2008, 105: 803-808. 10.1073/pnas.0709559105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gutierrez RA, Lejay L, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM: Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol. 2007, 8: R7-10.1186/gb-2007-8-1-r7.
Article
PubMed Central
PubMed
Google Scholar
Yang X, Zhang H, Li L: Global analysis of gene-level microRNA expression in Arabidopsis using deep sequencing data. Genomics. 2011, 98: 40-46.
Article
CAS
PubMed
Google Scholar
Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I, Weigel D, Ohler U, Benfey PN: High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res. 2012, 22: 163-176. 10.1101/gr.123547.111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S: Global identification of human transcribed sequences with genome tiling arrays. Science. 2004, 306: 2242-2246. 10.1126/science.1103388.
Article
CAS
PubMed
Google Scholar
Johnson JM, Edwards S, Shoemaker D, Schadt EE: Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 2005, 21: 93-102. 10.1016/j.tig.2004.12.009.
Article
CAS
PubMed
Google Scholar
Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007, 316: 1484-1488. 10.1126/science.1138341.
Article
CAS
PubMed
Google Scholar
Khaitovich P, Kelso J, Franz H, Visagie J, Giger T, Joerchel S, Petzold E, Green RE, Lachmann M, Pääbo S: Functionality of intergenic transcription: an evolutionary comparison. PLoS Genet. 2006, 2: e171-10.1371/journal.pgen.0020171.
Article
PubMed Central
PubMed
Google Scholar
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN: A gene expression map of the Arabidopsis root. Science. 2003, 302: 1956-1960. 10.1126/science.1090022.
Article
CAS
PubMed
Google Scholar
Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN: A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007, 318: 801-806. 10.1126/science.1146265.
Article
CAS
PubMed
Google Scholar
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M: Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 2004, 136: 2483-2499. 10.1104/pp.104.047019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010, 11: R106-10.1186/gb-2010-11-10-r106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang X-J, Gaasterland T, Chua N-H: Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol. 2005, 6: R30-10.1186/gb-2005-6-4-r30.
Article
PubMed Central
PubMed
Google Scholar
Ghosh Z, Chakrabarti J, Mallick B: miRNomics—The bioinformatics of microRNA genes. Biochem Biophys Res Commun. 2007, 363: 6-11. 10.1016/j.bbrc.2007.08.030.
Article
CAS
PubMed
Google Scholar
Meyers BC, Souret FF, Lu C, Green PJ: Sweating the small stuff: microRNA discovery in plants. Curr Opin Biotechnol. 2006, 17: 139-146. 10.1016/j.copbio.2006.01.008.
Article
CAS
PubMed
Google Scholar
Moxon S, Schwach F, Dalmay T, MacLean D, Studholme DJ, Moulton V: A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics. 2008, 24: 2252-2253. 10.1093/bioinformatics/btn428.
Article
CAS
PubMed
Google Scholar
Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD: MicroRNA activity in the Arabidopsis male germline. J Exp Bot. 2011, 62: 1611-1620. 10.1093/jxb/erq452.
Article
CAS
PubMed
Google Scholar
German MA, Pillay M, Jeong D-H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R: Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotech. 2008, 26: 941-946. 10.1038/nbt1417.
Article
CAS
Google Scholar
Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW: Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot. 2010, 61: 165-177. 10.1093/jxb/erp296.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang B, Jin Z, Xie D: Global analysis of non-coding small RNAs in Arabidopsis in response to jasmonate treatment by deep sequencing technology. J Integr Plant Biol. 2012, 54: 73-86. 10.1111/j.1744-7909.2012.01098.x.
Article
CAS
PubMed
Google Scholar
Sobkowiak L, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z: Non-canonical processing of Arabidopsis pri-miR319a/b/c generates additional microRNAs to target one RAP2.12 mRNA isoform. Front Plant Sci. 2012, 3: 46-
PubMed Central
CAS
PubMed
Google Scholar
Zhang W, Gao S, Zhou X, Xia J, Chellappan P, Zhou X, Zhang X, Jin H: Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol. 2010, 11: R81-10.1186/gb-2010-11-8-r81.
Article
PubMed Central
PubMed
Google Scholar
Allen E, Xie Z, Gustafson AM, Carrington JC: microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005, 121: 207-221. 10.1016/j.cell.2005.04.004.
Article
CAS
PubMed
Google Scholar
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D: Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005, 8: 517-527. 10.1016/j.devcel.2005.01.018.
Article
CAS
PubMed
Google Scholar
Huppe HC, Turpin DH: Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol. 1994, 45: 577-607. 10.1146/annurev.pp.45.060194.003045.
Article
CAS
Google Scholar
Sunkar R, Zhu J-K: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004, 16: 2001-2019. 10.1105/tpc.104.022830.
Article
PubMed Central
CAS
PubMed
Google Scholar
Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002, 297: 2053-2056. 10.1126/science.1076311.
Article
CAS
PubMed
Google Scholar
Brodersen P, Voinnet O: The diversity of RNA silencing pathways in plants. Trends Genet. 2006, 22: 268-280. 10.1016/j.tig.2006.03.003.
Article
CAS
PubMed
Google Scholar
Kidner CA, Martienssen RA: The developmental role of microRNA in plants. Curr Op Plant Biol. 2005, 8: 38-44. 10.1016/j.pbi.2004.11.008.
Article
CAS
Google Scholar
Lelandais-Briere C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M: Genome-wide medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell. 2009, 21: 2780-2796. 10.1105/tpc.109.068130.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang J, Xu Y, Huan Q, Chong K: Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics. 2009, 10: 449-10.1186/1471-2164-10-449.
Article
PubMed Central
PubMed
Google Scholar
Brown JWS, Marshall DF, Echeverria M: Intronic noncoding RNAs and splicing. Trends Plant Sci. 2008, 13: 335-342. 10.1016/j.tplants.2008.04.010.
Article
CAS
PubMed
Google Scholar
Meng Y, Shao C: Large-scale identification of mirtrons in Arabidopsis and Rice. PLoS One. 2012, 7: e31163-10.1371/journal.pone.0031163.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie Z, Kasschau KD, Carrington JC: Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol. 2003, 13: 784-789. 10.1016/S0960-9822(03)00281-1.
Article
CAS
PubMed
Google Scholar
Kim YK, Kim VN: Processing of intronic microRNAs. EMBO J. 2007, 26: 775-783. 10.1038/sj.emboj.7601512.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sanchez R, Cejudo FJ: Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and Rice. Plant Phys. 2003, 132: 949-957. 10.1104/pp.102.019653.
Article
CAS
Google Scholar
Podestá FE, Plaxton WC: Regulation of cytosolic carbon metabolism in germinating Ricinus communis cotyledons. Planta. 1994, 194: 381-387. 10.1007/BF00197539.
Article
Google Scholar
Scheible WR, Krapp A, Stitt M: Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ. 2000, 23: 1155-1167. 10.1046/j.1365-3040.2000.00634.x.
Article
CAS
Google Scholar
Sánchez R, Flores A, Cejudo FJ: Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta. 2006, 223: 901-909. 10.1007/s00425-005-0144-5.
Article
PubMed
Google Scholar
Robert HS, Quint A, Brand D, Vivian-Smith A, Offringa R: BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development. Plant J. 2009, 58: 109-121. 10.1111/j.1365-313X.2008.03764.x.
Article
CAS
PubMed
Google Scholar
Mandadi KK, Misra A, Ren S, McKnight TD: BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Phys. 2009, 150: 1930-1939. 10.1104/pp.109.139220.
Article
CAS
Google Scholar
Ullah H, Chen J-G, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM: The β-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell. 2003, 15: 393-409. 10.1105/tpc.006148.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen J-G, Gao Y, Jones AM: Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol. 2006, 141: 887-897. 10.1104/pp.106.079202.
Article
PubMed Central
CAS
PubMed
Google Scholar
Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu J-K: Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005, 123: 1279-1291. 10.1016/j.cell.2005.11.035.
Article
PubMed Central
CAS
PubMed
Google Scholar
Faghihi MA, Wahlestedt C: Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol. 2009, 10: 637-643. 10.1038/nrm2738.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martín-Trillo M, Cubas P: TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010, 15: 31-39.
Article
PubMed
Google Scholar
Wagner R, Pfannschmidt T: Eukaryotic transcription factors in plastids — Bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene. 2006, 381: 62-70.
Article
CAS
PubMed
Google Scholar
Kosugi S, Ohashi Y: PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell. 1997, 9: 1607-1619.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li C, Potuschak T, Colón-Carmona A, Gutiérrez RA, Doerner P: Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA. 2005, 102: 12978-12983. 10.1073/pnas.0504039102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer‒Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003, 4: 249-264. 10.1093/biostatistics/4.2.249.
Article
PubMed
Google Scholar
Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 2004, 10: 1507-1517. 10.1261/rna.5248604.
Article
PubMed Central
CAS
PubMed
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.
Article
PubMed Central
CAS
PubMed
Google Scholar