Aird SD: Ophidian envenomation strategies and the role of purines. Toxicon. 2002, 40 (4): 335-393.
CAS
PubMed
Google Scholar
Mackessy SP: Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers. Toxicon. 2010, 55 (8): 1463-1474.
CAS
PubMed
Google Scholar
Thomas RG, Pough FH: The effect of rattlesnake venom on digestion of prey. Toxicon. 1979, 17 (3): 221-228.
CAS
PubMed
Google Scholar
Kardong KV: Evolutionary patterns in advanced snakes. American Zoologist. 1980, 20 (1): 269-282.
Google Scholar
McCue MD: Prey envenomation does not improve digestive performance in western diamondback rattlesnakes (Crotalus atrox). J Exp Zool A Ecol Genet Physiol. 2007, 307 (10): 568-577.
PubMed
Google Scholar
Chu CW, Tsai TS, Tsai IH, Lin YS, Tu MC: Prey envenomation does not improve digestive performance in Taiwanese pit vipers (Trimeresurus gracilis and T. stejnegeri stejnegeri). Comp Biochem Physiol A Mol Integr Physiol. 2009, 152: 579-585.
PubMed
Google Scholar
Minton SA: A note on the venom of an aged rattlesnake. Toxicon. 1975, 13: 73-74.
CAS
PubMed
Google Scholar
Glenn JL, Straight R: The midget faded rattlesnake (Crotalus viridis concolor) venom: lethal toxicity and individual variability. Toxicon. 1977, 15 (2): 129-133.
CAS
PubMed
Google Scholar
Glenn JL, Straight R: Mojave rattlesnake Crotalus scutulatus scutulatus venom: variation in toxicity with geographical origin. Toxicon. 1978, 16 (1): 81-84.
CAS
PubMed
Google Scholar
Mackessy SP: Venom ontogeny in the Pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia. 1988, 1988: 92-101.
Google Scholar
Mackessy SP, Sixberry NM, Heyborne WH, Fritts T: Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon. 2006, 47 (5): 537-548.
CAS
PubMed
Google Scholar
Alape-Giron A, Sanz L, Escolano J, Flores-Diaz M, Madrigal M, Sasa M, Calvete JJ: Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008, 7 (8): 3556-3571.
CAS
PubMed
Google Scholar
Zelanis A, Tashima AK, Pinto AF, Leme AF, Stuginski DR, Furtado MF, Sherman NE, Ho PL, Fox JW, Serrano SM: Bothrops jararaca venom proteome rearrangement upon neonate to adult transition. Proteomics. 2011, 11 (21): 4218-4228.
CAS
PubMed
Google Scholar
Calvete JJ, Marcinkiewicz C, Sanz L: Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J Proteome Res. 2007, 6 (1): 326-336.
CAS
PubMed
Google Scholar
Sanz L, Escolano J, Ferretti M, Biscoglio MJ, Rivera E, Crescenti EJ, Angulo Y, Lomonte B, Gutierrez JM, Calvete JJ: Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. J Proteomics. 2007, 71 (1): 46-60.
PubMed
Google Scholar
Wagstaff SC, Sanz L, Juarez P, Harrison RA, Calvete JJ: Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. J Proteomics. 2009, 71 (6): 609-623.
CAS
PubMed
Google Scholar
Rodrigues RS, Boldrini-Franca J, Fonseca FP, de la Torre P, Henrique-Silva F, Sanz L, Calvete JJ, Rodrigues VM: Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis. J Proteomics. 2012, 75 (9): 2707-2720.
CAS
PubMed
Google Scholar
Menin L, Perchuc A, Favreau P, Perret F, Michalet S, Schoni R, Wilmer M, Stocklin R: High throughput screening of bradykinin-potentiating peptides in Bothrops moojeni snake venom using precursor ion mass spectrometry. Toxicon. 2008, 51 (7): 1288-1302.
CAS
PubMed
Google Scholar
Correa-Netto C, Junqueira-de-Azevedo Ide L, Silva DA, Ho PL, Leitao-de-Araujo M, Alves ML, Sanz L, Foguel D, Zingali RB, Calvete JJ: Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J Proteomics. 2011, 74 (9): 1795-1809.
CAS
PubMed
Google Scholar
Mori A, Toda M: Feeding Characteristics of a Japanese Pitviper, Ovophis okinavensis, on Okinawa Island: Seasonally Biased but Ontogenetically Stable Exploitation on Small Frogs. Current Herpetology. 2011, 30 (1): 41-52.
Google Scholar
Kadota Y: Is Ovophis okinavensis active only in the cool season? Temporal foraging pattern of a subtropical pit viper in Okinawa, Japan. Zoological Studies. 2011, 50 (3): 269-275.
Google Scholar
Klauber LM: Rattlesnakes: Their Habits, Life Histories, and Influence on Mankind. 1972, Berkeley: University of California Press, 2
Google Scholar
Mushinsky HR: Foraging ecology. Snakes Ecology and Evolutionary Biology. Edited by: Seigel RA, Collins JT, Novak SS. 1987, New York: MacMillan Publishing Company, 302-334.
Google Scholar
Campbell JA, Lamar WW: The Venomous Reptiles of Latin America. 1989, Ithaca, New York: Comstock Publishing Associates, Cornell University Press
Google Scholar
Greene HW: Snakes. The Evolution of Mystery in Nature. 1997, Berkeley: University of California Press
Google Scholar
Daltry JC, Wüster W, Thorpe RS: Intraspecific variation in the feeding ecology of the crotaline snake Calloselasma rhodostoma in Southeast Asia. J Herpetol. 1998, 32 (2): 198-205.
Google Scholar
Martins M, Marques OAV, Sazima I: Ecological and phylogenetic correlates of feeding habits in Neotropical pitvipers of the Genus Bothrops. Biology of the Vipers. Edited by: Schuett GW, Höggren M, Douglas ME, Greene HW. 2002, Utah: Eagle Mountain Publishing, 307-328.
Google Scholar
Shine R, Wall M: Why is intraspecific niche partitioning more common in snakes than in lizards?. Lizard Ecology. Edited by: Reilly SM, McBrayer LB, Miles DB. 2007, Cambridge: Cambridge University Press, 173-208.
Google Scholar
Lin CF, Tu MC: Food Habits of the Taiwanese Mountain Pitviper, Trimeresurus gracilis. Zoological Studies. 2008, 47 (6): 697-703.
Google Scholar
Nishimura M, Araki Y, Ueda H, Kawashima Y: Frequencies of prey items of habu, Trimeresurus flavoviridis (Viperidae), in the Okinawa Islands. Snake. 1991, 23: 81-83.
Google Scholar
Aird SD: Taxonomic distribution and quantitative analysis of free purine and pyrimidine nucleosides in snake venoms. Comp Biochem Physiol B Biochem Mol Biol. 2005, 140 (1): 109-126.
PubMed
Google Scholar
Durban J, Juarez P, Angulo Y, Lomonte B, Flores-Diaz M, Alape-Giron A, Sasa M, Sanz L, Gutierrez JM, Dopazo J: Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing. BMC Genomics. 2011, 12: 259-274.
PubMed Central
CAS
PubMed
Google Scholar
Fox JW, Serrano SM: Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005, 45 (8): 969-985.
CAS
PubMed
Google Scholar
Fujimura Y, Ikeda Y, Miura S, Yoshida E, Shima H, Nishida S, Suzuki M, Titani K, Taniuchi Y, Kawasaki T: Isolation and characterization of jararaca GPIb-BP, a snake venom antagonist specific to platelet glycoprotein Ib. Thromb Haemost. 1995, 74 (2): 743-750.
CAS
PubMed
Google Scholar
Swenson S, Costa F, Minea R, Sherwin RP, Ernst W, Fujii G, Yang D, Markland FS: Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol Cancer Ther. 2004, 3 (4): 499-511.
CAS
PubMed
Google Scholar
Giron ME, Rodriguez-Acosta A, Salazar AM, Sanchez EE, Galan J, Ibarra C, Guerrero B: Isolation and characterization of two new non-hemorrhagic metalloproteinases with fibrinogenolytic activity from the mapanare (Bothrops colombiensis) venom. Arch Toxicol. 2013, 87: 197-208.
CAS
PubMed
Google Scholar
Wei JF, Mo YZ, Qiao LY, Wei XL, Chen HQ, Xie H, Fu YL, Wang WY, Xiong YL, He SH: Potent histamine-releasing activity of atrahagin, a novel snake venom metalloproteinase. Int J Biochem Cell Biol. 2005, 38: 510-520.
PubMed
Google Scholar
Kini RM, Evans HJ: Inhibition of platelet aggregation by a fibrinogenase from Naja nigricollis venom is independent of fibrinogen degradation. Biochim Biophys Acta. 1991, 1095 (2): 117-121.
CAS
PubMed
Google Scholar
Ito M, Hamako J, Sakurai Y, Matsumoto M, Fujimura Y, Suzuki M, Hashimoto K, Titani K, Matsui T: Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Biochemistry. 2001, 40 (14): 4503-4511.
CAS
PubMed
Google Scholar
Kamiguti AS, Gallagher P, Marcinkiewicz C, Theakston RD, Zuzel M, Fox JW: Identification of sites in the cysteine-rich domain of the class P-III snake venom metalloproteinases responsible for inhibition of platelet function. FEBS Lett. 2003, 549 (1–3): 129-134.
CAS
PubMed
Google Scholar
Hsu CC, Wu WB, Huang TF: A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J Thromb Haemost. 2008, 6 (9): 1578-1585.
CAS
PubMed
Google Scholar
Sugiki M, Maruyama M, Yoshida E, Mihara H, Kamiguti AS, Theakston DG: Enhancement of plasma fibrinolysis in vitro by jararhagin, the main haemorrhagic metalloproteinase in Bothrops jararaca venom. Toxicon. 1995, 33 (12): 1605-1617.
CAS
PubMed
Google Scholar
Ho PL, Serrano SM, Chudzinski-Tavassi AM: Moura da Silva AM, Mentele R, Caldas C, Oliva ML, Batista IF, Oliveira ML: Angiostatin-like molecules are generated by snake venom metalloproteinases. Biochem Biophys Res Commun. 2002, 294 (4): 879-885.
CAS
PubMed
Google Scholar
Kumar RV, Gowda CD, Shivaprasad HV, Siddesha JM, Sharath BK, Vishwanath BS: Purification and characterization of 'Trimarin' a hemorrhagic metalloprotease with factor Xa-like Activity, from Trimeresurus malabaricus snake venom. Thromb Res. 2010, 126 (5): e356-e364.
CAS
PubMed
Google Scholar
Takeya H, Oda K, Miyata T, Omori-Satoh T, Iwanaga S: The complete amino acid sequence of the high molecular mass hemorrhagic protein HR1B isolated from the venom of Trimeresurus flavoviridis. J Biol Chem. 1990, 265 (27): 16068-16073.
CAS
PubMed
Google Scholar
Kishimoto M, Takahashi T: Molecular cloning of HR1a and HR1b, high molecular hemorrhagic factors, from Trimeresurus flavoviridis venom. Toxicon. 2002, 40 (9): 1369-1375.
CAS
PubMed
Google Scholar
Chijiwa T, Hamai S, Tsubouchi S, Ogawa T, Deshimaru M, Oda-Ueda N, Hattori S, Kihara H, Tsunasawa S, Ohno M: Interisland mutation of a novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of Crotalinae group II phospholipases A2. J Mol Evol. 2003, 57 (5): 546-554.
CAS
PubMed
Google Scholar
Kosugi T, Ariga Y, Nakamura M, Kinjo K: Purification and some chemical properties of thrombin-like enzyme from Trimeresurus flavoviridis venom. Thromb Haemost. 1986, 55 (1): 24-30.
CAS
PubMed
Google Scholar
Kinjoh K, Kosugi T, Nakamura M, Hanashiro K, Sunagawa M, Tokeshi Y, Eguchi Y: Habutobin splits the Arg16-Gly17 bond in the A alpha chain of rabbit fibrinogen. Thromb Haemost. 1997, 77 (6): 1127-1128.
CAS
PubMed
Google Scholar
Sunagawa M, Nakamura M, Kosugi T: Cloning of habutobin cDNA and antithrombotic activity of recombinant protein. Biochem Biophys Res Commun. 2007, 362 (4): 899-904.
CAS
PubMed
Google Scholar
Nejime T, Kinjoh K, Nakamura M, Hanashiro K, Sunagawa M, Eguchi Y, Kosugi T: Habutobin recognizes Thr(7) in the sequence of fibrinopeptide A of rabbit fibrinogen. Toxicon. 2000, 38 (8): 1029-1041.
CAS
PubMed
Google Scholar
Oyama E, Takahashi H: Amino acid sequence of a thrombin like enzyme, elegaxobin, from the venom of Trimeresurus elegans (Sakishima-habu). Toxicon. 2002, 40 (7): 959-970.
CAS
PubMed
Google Scholar
Oyama E, Takahashi H: Amino acid sequence of a thrombin like enzyme, elegaxobin II, from the venom of Trimeresurus elegans (Sakishima-Habu). Toxicon. 2004, 44 (7): 711-721.
CAS
PubMed
Google Scholar
Shieh TC, Kawabata S, Kihara H, Ohno M, Iwanaga S: Amino acid sequence of a coagulant enzyme, flavoxobin, from Trimeresurus flavoviridis venom. J Biochem (Tokyo). 1988, 103 (4): 596-605.
CAS
Google Scholar
Shieh TC, Tanaka S, Kihara H, Ohno M, Makisumi S: Purification and characterization of a coagulant enzyme from Trimeresurus flavoviridis venom. J Biochem (Tokyo). 1985, 98 (3): 713-721.
CAS
Google Scholar
Yamamoto C, Tsuru D, Oda-Ueda N, Ohno M, Hattori S, Kim ST: Flavoxobin, a serine protease from Trimeresurus flavoviridis (habu snake) venom, independently cleaves Arg726-Ser727 of human C3 and acts as a novel, heterologous C3 convertase. Immunology. 2002, 107 (1): 111-117.
PubMed Central
CAS
PubMed
Google Scholar
Tatematsu R, Komori Y, Nikai T: A new thrombin-like enzyme, flavoviridiobin from the venom of Trimeresurus flavoviridis (habu). J Nat Toxins. 2000, 9 (4): 327-339.
CAS
PubMed
Google Scholar
Castro HC, Rodrigues CR: Current status of thrombin-like enzymes. Toxin Reviews. 2006, 25: 291-318.
CAS
Google Scholar
Wu J, Jin Y, Zhong S, Chen R, Zhu S, Wang W, Lu Q, Xiong Y: A unique group of inactive serine protease homologues from snake venom. Toxicon. 2008, 52 (2): 277-284.
CAS
PubMed
Google Scholar
Wang YM, Parmelee J, Guo YW, Tsai IH: Absence of phospholipase A(2) in most Crotalus horridus venom due to translation blockage: comparison with Crotalus horridus atricaudatus venom. Toxicon. 2010, 56 (1): 93-100.
CAS
PubMed
Google Scholar
Yamazaki Y, Koike H, Sugiyama Y, Motoyoshi K, Wada T, Hishinuma S, Mita M, Morita T: Cloning and characterization of novel snake venom proteins that block smooth muscle contraction. Eur J Biochem. 2002, 269 (11): 2708-2715.
CAS
PubMed
Google Scholar
Rokyta DR, Wray KP, Lemmon AR, Lemmon EM, Caudle SB: A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon. 2011, 57 (5): 657-671.
CAS
PubMed
Google Scholar
Hutchinson DA, Mori A, Savitzky AH, Burghardt GM, Wu X, Meinwald J, Schroeder FC: Dietary sequestration of defensive steroids in nuchal glands of the Asian snake Rhabdophis tigrinus. Proc Natl Acad Sci U S A. 2007, 104 (7): 2265-2270.
PubMed Central
CAS
PubMed
Google Scholar
Peichoto ME, Mackessy SP, Teibler P, Tavares FL, Burckhardt PL, Breno MC, Acosta O, Santoro ML: Purification and characterization of a cysteine-rich secretory protein from Philodryas patagoniensis snake venom. Comp Biochem Physiol C Toxicol Pharmacol. 2009, 150 (1): 79-84.
PubMed
Google Scholar
Siigur E, Neuman T, Jarve V, Tara A, Siigur J: Isolation and characterization of nerve growth factor from Vipera lebetina (snake) venom. Comp Biochem Physiol B. 1985, 81 (1): 211-215.
CAS
PubMed
Google Scholar
Guo LY, Zhu JF, Wu XF, Zhou YC: Cloning of a cDNA encoding a nerve growth factor precursor from the Agkistrodon halys Pallas. Toxicon. 1999, 37 (3): 465-470.
CAS
PubMed
Google Scholar
Kostiza T, Dahinden CA, Rihs S, Otten U, Meier J: Nerve growth factor from the venom of the Chinese cobra Naja naja atra: purification and description of non-neuronal activities. Toxicon. 1995, 33 (10): 1249-1261.
CAS
PubMed
Google Scholar
Kostiza T, Meier J: Nerve growth factors from snake venoms: chemical properties, mode of action and biological significance. Toxicon. 1996, 34 (7): 787-806.
CAS
PubMed
Google Scholar
Orenstein NS, Dvorak HF, Blanchard MH, Young M: Nerve growth factor: a protease that can activate plasminogen. Proc Natl Acad Sci U S A. 1978, 75 (11): 5497-5500.
PubMed Central
CAS
PubMed
Google Scholar
Young RJ, Sweeney K: Adenylation and ADP-ribosylation in the mouse 1-cell embryo. J Embryol Exp Morphol. 1979, 49: 139-152.
CAS
PubMed
Google Scholar
Clemetson KJ, Morita T, Kini RM: Classification and nomenclature of snake venom C-type lectins and related proteins. Toxicon. 2009, 54 (1): 83-
CAS
PubMed
Google Scholar
Clemetson KJ: Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon. 2010, 56 (7): 1236-1246.
CAS
PubMed
Google Scholar
Morita T: Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon. 2005, 45 (8): 1099-1114.
CAS
PubMed
Google Scholar
Taniuchi Y, Kawasaki T, Fujimura Y: The high molecular mass, glycoprotein Ib-binding protein flavocetin-A induces only small platelet aggregates in vitro. Thromb Res. 2000, 97 (2): 69-75.
CAS
PubMed
Google Scholar
Taniuchi Y, Kawasaki T, Fujimura Y, Suzuki M, Titani K, Sakai Y, Kaku S, Hisamichi N, Satoh N, Takenaka T: Flavocetin-A and -B, two high molecular mass glycoprotein Ib binding proteins with high affinity purified from Trimeresurus flavoviridis venom, inhibit platelet aggregation at high shear stress. Biochim Biophys Acta. 1995, 1244 (2–3): 331-338.
PubMed
Google Scholar
Shin Y, Okuyama I, Hasegawa J, Morita T: Molecular cloning of glycoprotein Ib-binding protein, flavocetin-A, which inhibits platelet aggregation. Thromb Res. 2000, 99 (3): 239-247.
CAS
PubMed
Google Scholar
Atoda H, Ishikawa M, Yoshihara E, Sekiya F, Morita T: Blood coagulation factor IX-binding protein from the venom of Trimeresurus flavoviridis: purification and characterization. J Biochem. 1995, 118 (5): 965-973.
CAS
PubMed
Google Scholar
Higuchi S, Murayama N, Saguchi K, Ohi H, Fujita Y, Camargo AC, Ogawa T, Deshimaru M, Ohno M: Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom. Immunopharmacology. 1999, 44 (1–2): 129-135.
CAS
PubMed
Google Scholar
Cintra AC, Vieira CA, Giglio JR: Primary structure and biological activity of bradykinin potentiating peptides from Bothrops insularis snake venom. J Protein Chem. 1990, 9 (2): 221-227.
CAS
PubMed
Google Scholar
Ianzer D, Konno K, Marques-Porto R, Vieira Portaro FC, Stocklin R: Martins de Camargo AC, Pimenta DC: Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides. 2004, 25 (7): 1085-1092.
CAS
PubMed
Google Scholar
Kato H, Suzuki T, Okada K, Kimura T, Sakakibara S: Structure of potentiator A, one of the five bradykinin potentiating peptides from the venom of Agkistrodon halys blomhoffii. Experientia. 1973, 29 (5): 574-575.
CAS
PubMed
Google Scholar
Chi CW, Wang SZ, Xu LG, Wang MY, Lo SS, Huang WD: Structure-function studies on the bradykinin potentiating peptide from Chinese snake venom (Agkistrodon halys Pallas). Peptides. 1985, 6 (Suppl 3): 339-342.
CAS
PubMed
Google Scholar
Ferreira SH, Bartelt DC, Greene LJ: Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry. 1970, 9 (13): 2583-2593.
CAS
PubMed
Google Scholar
Ianzer D, Santos RA, Etelvino GM, Xavier CH, de Almeida SJ, Mendes EP, Machado LT, Prezoto BC, Dive V, de Camargo AC: Do the cardiovascular effects of angiotensin-converting enzyme (ACE) I involve ACE-independent mechanisms? new insights from proline-rich peptides of Bothrops jararaca. J Pharmacol Exp Ther. 2007, 322 (2): 795-805.
CAS
PubMed
Google Scholar
Ianzer D, Xavier CH, Fraga FC, Lautner RQ, Guerreiro JR, Machado LT, Mendes EP, de Camargo AC, Santos RA: BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect. Therapeutic advances in cardiovascular disease. 2011, 5 (6): 281-295.
CAS
PubMed
Google Scholar
Guerreiro JR, Lameu C, Oliveira EF, Klitzke CF, Melo RL, Linares E, Augusto O, Fox JW, Lebrun I, Serrano SM: Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: role in arginine and nitric oxide production. J Biol Chem. 2009, 284 (30): 20022-20033.
PubMed Central
CAS
PubMed
Google Scholar
Tashima AK, Zelanis A, Kitano ES, Ianzer D, Melo RL, Rioli V, Sant'anna SS, Schenberg AC, Camargo AC, Serrano SM: Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics. 2012, 11 (11): 1245-1262.
PubMed Central
PubMed
Google Scholar
Ferreira LA, Henriques OB, Lebrun I, Batista MB, Prezoto BC, Andreoni AS, Zelnik R, Habermehl G: A new bradykinin-potentiating peptide (peptide P) isolated from the venom of Bothrops jararacussu (jararacucu tapete, urutu dourado). Toxicon. 1992, 30 (1): 33-40.
CAS
PubMed
Google Scholar
Ferreira LAF, Auer H, Haslinger E, Fedele C, Habermehl GG: Spatial structures of the bradykinin potentiating peptide F from Agkistrodon piscivorus piscivoris venom. Toxicon. 1999, 37 (4): 661-676.
CAS
PubMed
Google Scholar
Doery HM, Pearson JE: Phospholipase B in snake venoms and bee venom. Biochem J. 1964, 92 (3): 599-602.
PubMed Central
CAS
PubMed
Google Scholar
Bernheimer AW, Linder R, Weinstein SA, Kim KS: Isolation and characterization of a phospholipase B from venom of Collett's snake, Pseudechis colletti. Toxicon. 1987, 25 (5): 547-554.
CAS
PubMed
Google Scholar
Chatrath ST, Chapeaurouge A, Lin Q, Lim TK, Dunstan N, Mirtschin P, Kumar PP, Kini RM: Identification of novel proteins from the venom of a cryptic Snake Drysdalia coronoides by a combined transcriptomics and proteomics approach. J Proteome Res. 2011, 10 (2): 739-750.
CAS
PubMed
Google Scholar
Feola M, Simoni J, Tran R, Lox CD, Canizaro PC: Toxic factors in the red blood cell membrane. J Trauma. 1989, 29 (8): 1065-1075.
CAS
PubMed
Google Scholar
Kinoshita T, Inoue K, Okada M, Akiyama Y: Release of phospholipids from liposomal model membrane damaged by antibody and complement. J Immunol. 1977, 119 (1): 73-76.
CAS
PubMed
Google Scholar
Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med. 2003, 9 (6): 669-676.
CAS
PubMed
Google Scholar
Takahashi H, Hattori S, Iwamatsu A, Takizawa H, Shibuya M: A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1. J Biol Chem. 2004, 279 (44): 46304-46314.
CAS
PubMed
Google Scholar
Chen YL, Tsai IH, Hong TM, Tsai SH: Crotalid venom vascular endothelial growth factors has preferential affinity for VEGFR-1. Characterization of Protobothrops mucrosquamatus venom VEGF. Thromb Haemost. 2005, 93 (2): 331-338.
CAS
PubMed
Google Scholar
Yamazaki Y, Matsunaga Y, Tokunaga Y, Obayashi S, Saito M, Morita T: Snake venom Vascular Endothelial Growth Factors (VEGF-Fs) exclusively vary their structures and functions among species. J Biol Chem. 2009, 284 (15): 9885-9891.
PubMed Central
CAS
PubMed
Google Scholar
Ku DD, Zaleski JK, Liu S, Brock TA: Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol. 1993, 265 (2 Pt 2): H586-H592.
CAS
PubMed
Google Scholar
Weis SM, Cheresh DA: Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005, 437 (7058): 497-504.
CAS
PubMed
Google Scholar
Yang R, Thomas GR, Bunting S, Ko A, Ferrara N, Keyt B, Ross J, Jin H: Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J Cardiovasc Pharmacol. 1996, 27 (6): 838-844.
CAS
PubMed
Google Scholar
Tokunaga Y, Yamazaki Y, Morita T: Identification and localization of heparin-binding region of snake venom VEGF and its blocking of VEGF-A165. Pathophysiol Haemost Thromb. 2005, 34 (4–5): 194-196.
CAS
PubMed
Google Scholar
Yamazaki Y, Nakano Y, Imamura T, Morita T: Augmentation of vascular permeability of VEGF is enhanced by KDR-binding proteins. Biochem Biophys Res Commun. 2007, 355 (3): 693-699.
CAS
PubMed
Google Scholar
Iwanaga S, Suzuki T: Enzymes in snake venoms. Snake Venoms, vol. 52. Edited by: Lee C-Y. 1979, Berlin: Springer-Verlag, 61-158.
Google Scholar
Tan NH, Ponnudurai G: Comparative study of the enzymatic, hemorrhagic, procoagulant and anticoagulant activities of some animal venoms. Comp Biochem Physiol C. 1992, 103 (2): 299-302.
CAS
PubMed
Google Scholar
Tan NH, Ponnudurai G: A comparative study of the biological properties of venoms of some old world vipers (Subfamily Viperinae). Int J Biochem. 1992, 24 (2): 331-336.
CAS
PubMed
Google Scholar
Jorge da Silva N, Aird SD: Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comp Biochem Physiol C Toxicol Pharmacol. 2001, 128 (3): 425-456.
PubMed
Google Scholar
Heppel LA, Hilmoe RJ: Purification and properties of 5'-nucleotidase. J Biol Chem. 1951, 188: 665-676.
CAS
PubMed
Google Scholar
Mizuno Y, Ikehara M, Ueda T, Nomura A, Ohtsuka E, Ishikawa F, Kanai Y: Interactions between synthetic nucleotide analogs and snake venom 5'-nucleotidase. Chem Pharm Bull. 1961, 9: 338-340.
CAS
Google Scholar
Sulkowski E, Bjork W, Laskowski M: A specific and nonspecific alkaline monophosphatase in the venom of Bothrops atrox and their occurrence in the purified venom phosphodiesterase. J Biol Chem. 1963, 238: 2477-2486.
CAS
PubMed
Google Scholar
Gartner TK, Ogilvie ML: Isolation and characterization of three Ca2 + -dependent beta-galactoside-specific lectins from snake venoms. Biochem J. 1984, 224 (1): 301-307.
PubMed Central
CAS
PubMed
Google Scholar
Gartner TK, Stocker K, Williams DC: Thrombolectin: a lectin isolated from Bothrops atrox venom. FEBS Lett. 1980, 117 (1): 13-16.
CAS
PubMed
Google Scholar
Helmbold W, Fehres J, Prokop O, Uhlenbruck G, Janssen E: B and T lymphocyte mitogenic properties in a snake venom. Biomed Biochim Acta. 1986, 45 (4): 459-466.
CAS
PubMed
Google Scholar
Helmbold W, Prokop O, Uhlenbruck G, Bohmer G, Lutticken R: Snake venom lectins: a new group of T- and B-cell mitogenic anti-galactans. Biomed Biochim Acta. 1985, 44 (11–12): K91-K96.
CAS
PubMed
Google Scholar
Mastro AM, Hurley DJ, Winning RK, Filipowski R, Ogilvie ML, Gartner TK: Mitogenic activity of snake venom lectins. Cell Tissue Kinet. 1986, 19 (5): 557-566.
CAS
PubMed
Google Scholar
Fry BG, Wuster W: Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol. 2004, 21 (5): 870-883.
CAS
PubMed
Google Scholar
Ogawa T, Chijiwa T, Oda-Ueda N, Ohno M: Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. Toxicon. 2005, 45 (1): 1-14.
CAS
PubMed
Google Scholar
Beyer EC, Tokuyasu KT, Barondes SH: Localization of an endogenous lectin in chicken liver, intestine, and pancreas. J Cell Biol. 1979, 82 (2): 565-571.
CAS
PubMed
Google Scholar
Ogilvie ML, Dockter ME, Wenz L, Gartner TK: Isolation and characterization of lactose-binding lectins from the venoms of the snakes Lachesis muta and Dendroaspis jamesonii. J Biochem (Tokyo). 1986, 100 (6): 1425-1431.
CAS
Google Scholar
Lomonte B, Rojas G, Gutierrez JM, Ramirez G: Isolation of a galactose-binding lectin from the venom of the snake Bothrops godmani (Godmann's pit viper). Toxicon. 1990, 28 (1): 75-81.
CAS
PubMed
Google Scholar
Danziger RS: Aminopeptidase N in arterial hypertension. Heart Fail Rev. 2008, 13 (3): 293-298.
CAS
PubMed
Google Scholar
Mitsui T, Nomura S, Itakura A, Mizutani S: Role of aminopeptidases in the blood pressure regulation. Biol Pharm Bull. 2004, 27 (6): 768-771.
CAS
PubMed
Google Scholar
Bodineau L, Frugiere A, Marc Y, Claperon C, Llorens-Cortes C: Aminopeptidase A inhibitors as centrally acting antihypertensive agents. Heart Fail Rev. 2008, 13 (3): 311-319.
CAS
PubMed
Google Scholar
Mizutani S, Taira H, Kurauchi O, Ito Y, Imaizumi H, Furuhashi M, Narita O, Tomoda Y: Effect of microsomal leucine aminopeptidase from human placenta (microsomal P-LAP) on pressor response to infused angiotensin II (A-II) in rat. Exp Clin Endocrinol. 1987, 90 (2): 206-212.
CAS
PubMed
Google Scholar
Mizutani S, Okano K, Hasegawa E, Sakura H, Oya M, Yamada M: Human placental leucine aminopeptidase (P-LAP) as a hypotensive agent. Experientia. 1982, 38 (7): 821-822.
CAS
PubMed
Google Scholar
Ahmad S, Ward PE: Role of aminopeptidase activity in the regulation of the pressor activity of circulating angiotensins. J Pharmacol Exp Ther. 1990, 252 (2): 643-650.
CAS
PubMed
Google Scholar
Ogawa Y, Murayama N, Fujita Y, Yanoshita R: Characterization and cDNA cloning of aminopeptidase A from the venom of Gloydius blomhoffi brevicaudus. Toxicon. 2007, 49 (8): 1172-1181.
CAS
PubMed
Google Scholar
Tu AT, Toom PM: The presence of a L-leucyl-beta-napthylamide hydrolyzing enzyme in snake venoms. Experientia. 1967, 23 (6): 439-440.
CAS
PubMed
Google Scholar
Ogawa Y, Mamura Y, Murayama N, Yanoshita R: Characterization and cDNA cloning of dipeptidyl peptidase IV from the venom of Gloydius blomhoffi brevicaudus. Comp Biochem Physiol B Biochem Mol Biol. 2006, 145 (1): 35-42.
PubMed
Google Scholar
Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R: Exosome-like vesicles in Gloydius blomhoffii blomhoffii venom. Toxicon. 2008, 51 (6): 984-993.
CAS
PubMed
Google Scholar
Aird SD: A quantitative assessment of variation in venom constituents within and between three nominal rattlesnake subspecies. Toxicon. 1985, 23 (6): 1000-1004.
CAS
PubMed
Google Scholar
Aird SD: Chromatographic behavior of Bothrops erythromelas phospholipase and other venom constituents on Superdex 75. Prep Biochem Biotechnol. 2004, 34 (4): 345-364.
CAS
PubMed
Google Scholar
Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R: Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull. 2008, 31 (6): 1059-1062.
CAS
PubMed
Google Scholar
Aird SD: Snake venom dipeptidyl peptidase IV: taxonomic distribution and quantitative variation. Comp Biochem Physiol B Biochem Mol Biol. 2008, 150 (2): 222-228.
PubMed
Google Scholar
Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG: Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res. 2009, 8 (6): 3055-3067.
CAS
PubMed
Google Scholar
Takeya H, Arakawa M, Miyata T, Iwanaga S, Omori-Satoh T: Primary structure of H2-proteinase, a non-hemorrhagic metalloproteinase, isolated from the venom of the habu snake, Trimeresurus flavoviridis. J Biochem (Tokyo). 1989, 106 (1): 151-157.
CAS
Google Scholar
Randolph A, Chamberlain SH, Chu HL, Retzios AD, Markland FS, Masiarz FR: Amino acid sequence of fibrolase, a direct-acting fibrinolytic enzyme from Agkistrodon contortrix contortrix venom. Protein Sci. 1992, 1 (5): 590-600.
PubMed Central
CAS
PubMed
Google Scholar
Terada S, Hori J, Fujimura S, Kimoto E: Purification and amino acid sequence of brevilysin L6, a non-hemorrhagic metalloprotease from Agkistrodon halys brevicaudus venom. J Biochem (Tokyo). 1999, 125 (1): 64-69.
CAS
Google Scholar
Aird SD, Kaiser II, Lewis RV, Kruggel WG: Rattlesnake presynaptic neurotoxins: primary structure and evolutionary origin of the acidic subunit. Biochemistry. 1985, 24 (25): 7054-7058.
CAS
PubMed
Google Scholar
Aird SD, Yates JR, Martino PA, Shabanowitz J, Hunt DF, Kaiser II: The amino acid sequence of the acidic subunit B-chain of crotoxin. Biochim Biophys Acta. 1990, 1040 (2): 217-224.
CAS
PubMed
Google Scholar
Pawlak J, Manjunatha Kini R: Snake venom glutaminyl cyclase. Toxicon. 2006, 48 (3): 278-286.
CAS
PubMed
Google Scholar
Tu AT, Hendon RR: Characterization of lizard venom hyaluronidase and evidence for its action as a spreading factor. Comp Biochem Physiol B. 1983, 76 (2): 377-383.
CAS
PubMed
Google Scholar
Girish KS, Mohanakumari HP, Nagaraju S, Vishwanath BS, Kemparaju K: Hyaluronidase and protease activities from Indian snake venoms: neutralization by Mimosa pudica root extract. Fitoterapia. 2004, 75 (3–4): 378-380.
CAS
PubMed
Google Scholar
Pahari S, Mackessy SP, Kini RM: The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC Mol Biol. 2007, 8: 115-
PubMed Central
PubMed
Google Scholar
Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee MC, Khoo HE, Cheah LS, Bertrand D, Kini RM: Candoxin, a novel toxin from Bungarus candidus, is a reversible antagonist of muscle (alphabetagammadelta) but a poorly reversible antagonist of neuronal alpha 7 nicotinic acetylcholine receptors. J Biol Chem. 2002, 277 (20): 17811-17820.
CAS
PubMed
Google Scholar
Juarez P, Sanz L, Calvete JJ: Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics. 2004, 4 (2): 327-338.
CAS
PubMed
Google Scholar
Junqueira-de-Azevedo Ide L, Ho PL: A survey of gene expression and diversity in the venom glands of the pitviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene. 2002, 299 (1–2): 279-291.
PubMed
Google Scholar
Kashima S, Roberto PG, Soares AM, Astolfi-Filho S, Pereira JO, Giuliati S, Faria M, Xavier MA, Fontes MR, Giglio JR: Analysis of Bothrops jararacussu venomous gland transcriptome focusing on structural and functional aspects: I–gene expression profile of highly expressed phospholipases A2. Biochimie. 2004, 86 (3): 211-219.
CAS
PubMed
Google Scholar
Qinghua L, Xiaowei Z, Wei Y, Chenji L, Yijun H, Pengxin Q, Xingwen S, Songnian H, Guangmei Y: A catalog for transcripts in the venom gland of the Agkistrodon acutus: identification of the toxins potentially involved in coagulopathy. Biochem Biophys Res Commun. 2006, 341 (2): 522-531.
PubMed
Google Scholar
Zhang B, Liu Q, Yin W, Zhang X, Huang Y, Luo Y, Qiu P, Su X, Yu J, Hu S: Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags. BMC Genomics. 2006, 7: 152-
PubMed Central
PubMed
Google Scholar
Boldrini-França J, Correa-Netto C, Silva MM, Rodrigues RS, De La Torre P, Perez A, Soares AM, Zingali RB, Nogueira RA, Rodrigues VM: Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J Proteomics. 2010, 73 (9): 1758-1776.
PubMed
Google Scholar
Boldrini-França J, Rodrigues RS, Fonseca FP, Menaldo DL, Ferreira FB, Henrique-Silva F, Soares AM, Hamaguchi A, Rodrigues VM, Otaviano AR: Crotalus durissus collilineatus venom gland transcriptome: analysis of gene expression profile. Biochimie. 2009, 91 (5): 586-595.
PubMed
Google Scholar
Rokyta DR, Lemmon AR, Margres MJ, Aronow K: The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics. 2012, 13: 312-
PubMed Central
CAS
PubMed
Google Scholar
Weldon CL, Mackessy SP: Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis portoricensis: Dipsadidae). Toxicon. 2010, 55 (2–3): 558-569.
CAS
PubMed
Google Scholar
Gonçalves JM, Polson A: The electrophoretic analysis of snake venoms. Arch. Biochem. 1947, 13: 253-259.
PubMed
Google Scholar
Cameron DL, Tu AT: Chemical and functional homology of myotoxin a from prairie rattlesnake venom and crotamine from South American rattlesnake venom. Biochim Biophys Acta. 1978, 532 (1): 147-154.
CAS
PubMed
Google Scholar
Engle CM, Becker RR, Bailey T, Bieber AL: Characterization of two myotoxic proteins from venom of Crotalus viridis concolor. J Toxicol –. Toxin Rev. 1983, 2 (2): 267-283.
CAS
Google Scholar
Bober MA, Glenn JL, Straight RC, Ownby CL: Detection of myotoxin alpha-like proteins in various snake venoms. Toxicon. 1988, 26 (7): 665-673.
CAS
PubMed
Google Scholar
Samejima Y, Aoki Y, Mebs D: Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus). Toxicon. 1991, 29 (4–5): 461-468.
CAS
PubMed
Google Scholar
Johnson EK, Ownby CL: Isolation of a myotoxin from the venom of Agkistrodon contortrix laticinctus (broad-banded copperhead) and pathogenesis of myonecrosis induced by it in mice. Toxicon. 1993, 31 (3): 243-255.
CAS
PubMed
Google Scholar
Schenberg S: Geographical pattern of crotamine distribution in the same rattlesnake subspecies. Science. 1959, 129: 1361-1363.
CAS
PubMed
Google Scholar
Griffin PR, Aird SD: A new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis). FEBS Lett. 1990, 274 (1–2): 43-47.
CAS
PubMed
Google Scholar
Chang CC, Hong SJ, Su MJ: A study on the membrane depolarization of skeletal muscles caused by a scorpion toxin, sea anemone toxin II and crotamine and the interaction between toxins. Br J Pharmacol. 1983, 79 (3): 673-680.
PubMed Central
CAS
PubMed
Google Scholar
Chang CC, Tseng KH: Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channel of murine skeletal muscle. Br J Pharmacol. 1978, 63 (3): 551-559.
PubMed Central
CAS
PubMed
Google Scholar
Tsai MC, IS P, Chang CC: Electrophysiological studies of crotamine on the rat skeletal muscle membrane. Proc Natl Sci Counc Repub China Part B Basic Sci. 1981, 5 (3): 307-313.
Google Scholar
Utaisincharoen P, Baker B, Tu AT: Binding of myotoxin a to sarcoplasmic reticulum Ca(2+)-ATPase: a structural study. Biochemistry. 1991, 30 (33): 8211-8216.
CAS
PubMed
Google Scholar
Hong SJ, Lin WW, Chang CC: Inhibition of the Sodium Channel by SK&F 96365, an Inhibitor of the Receptor-Operated Calcium Channel, in Mouse Diaphragm. J Biomed Sci. 1994, 1 (3): 172-178.
CAS
PubMed
Google Scholar
Ohkura M, Ide T, Furukawa K, Kawasaki T, Kasai M, Ohizumi Y: Calsequestrin is essential for the Ca2+ release induced by myotoxin alpha in skeletal muscle sarcoplasmic reticulum. Can J Physiol Pharmacol. 1995, 73 (8): 1181-1185.
CAS
PubMed
Google Scholar
Matavel AC, Ferreira-Alves DL, Beirao PS, Cruz JS: Tension generation and increase in voltage-activated Na + current by crotamine. Eur J Pharmacol. 1998, 348 (2–3): 167-173.
CAS
PubMed
Google Scholar
Mancin AC, Soares AM, Andriao-Escarso SH, Faca VM, Greene LJ, Zuccolotto S, Pela IR, Giglio JR: The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological study. Toxicon. 1998, 36 (12): 1927-1937.
CAS
PubMed
Google Scholar
Mancin AC, Soares AM, Giglio CA, Andriao-Escarso SH, Vieira CA, Giglio JR: The histamine releasers crotamine, protamine and compound 48/80 activate specific proteases and phospholipases A2. Biochem Mol Biol Int. 1997, 42 (6): 1171-1177.
CAS
PubMed
Google Scholar
Kerkis A, Kerkis I, Radis-Baptista G, Oliveira EB, Vianna-Morgante AM, Pereira LV, Yamane T: Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. Faseb J. 2004, 18 (12): 1407-1409.
CAS
PubMed
Google Scholar
Oguiura N, Boni-Mitake M, Radis-Baptista G: New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon. 2005, 46 (4): 363-370.
CAS
PubMed
Google Scholar
Yount NY, Kupferwasser D, Spisni A, Dutz SM, Ramjan ZH, Sharma S, Waring AJ, Yeaman MR: Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc Natl Acad Sci U S A. 2009, 106 (35): 14972-14977.
PubMed Central
CAS
PubMed
Google Scholar
Marcussi S, Santos PR, Menaldo DL, Silveira LB, Santos-Filho NA, Mazzi MV, da Silva SL, Stabeli RG, Antunes LM, Soares AM: Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes. Mutat Res. 2011, 724 (1–2): 59-63.
CAS
PubMed
Google Scholar
Oguiura N, Boni-Mitake M, Affonso R, Zhang G: In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. J Antibiot (Tokyo). 2011, 64 (4): 327-331.
CAS
Google Scholar
O'Keefe MP, Nedelkov D, Bieber AL, Nieman RA: Evidence for isomerization in myotoxin a from the prairie rattlesnake (Crotalus viridis viridis). Toxicon. 1996, 34 (4): 417-434.
PubMed
Google Scholar
Nedelkov D, O'Keefe MP, Chapman TL, Bieber AL: The role of Pro20 in the isomerization of myotoxin a from Crotalus viridis viridis: folding and structural characterization of synthetic myotoxin a and its Pro20Gly homolog. Biochem Biophys Res Commun. 1997, 241 (2): 525-529.
CAS
PubMed
Google Scholar
Marquardt H, Todaro GJ, Twardzik DR: Snake venom Growth Arresting Peptide. 1988, United States Patent 4,774,318
Google Scholar
Radis-Baptista G, Kubo T, Oguiura N: Prieto da Silva AR, Hayashi MA, Oliveira EB, Yamane T: Identification of crotasin, a crotamine-related gene of Crotalus durissus terrificus. Toxicon. 2004, 43 (7): 751-759.
CAS
PubMed
Google Scholar
Radis-Baptista G, Oguiura N, Hayashi MA, Camargo ME, Grego KF, Oliveira EB, Yamane T: Nucleotide sequence of crotamine isoform precursors from a single South American rattlesnake (Crotalus durissus terrificus). Toxicon. 1999, 37 (7): 973-984.
CAS
PubMed
Google Scholar
Oguiura N, Collares MA, Furtado MF, Ferrarezzi H, Suzuki H: Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene. 2009, 446 (1): 35-40.
CAS
PubMed
Google Scholar
Simpson KJ, Ranganathan S, Fisher JA, Janssens PA, Shaw DC, Nicholas KR: The gene for a novel member of the whey acidic protein family encodes three four-disulfide core domains and is asynchronously expressed during lactation. J Biol Chem. 2000, 275 (30): 23074-23081.
CAS
PubMed
Google Scholar
Tomee JF, Koeter GH, Hiemstra PS, Kauffman HF: Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option?. Thorax. 1998, 53 (2): 114-116.
PubMed Central
CAS
PubMed
Google Scholar
Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD: Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell. 2002, 111 (6): 867-878.
CAS
PubMed
Google Scholar
Torres AM, Wong HY, Desai M, Moochhala S, Kuchel PW, Kini RM: Identification of a novel family of proteins in snake venoms. Purification and structural characterization of nawaprin from Naja nigricollis snake venom. J Biol Chem. 2003, 278 (41): 40097-40104.
CAS
PubMed
Google Scholar
Clauss A, Lilja H, Lundwall A: A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Biochem J. 2002, 368 (Pt 1): 233-242.
PubMed Central
CAS
PubMed
Google Scholar
Dufton MJ: Proteinase inhibitors and dendrotoxins. Sequence classification, structural prediction and structure/activity. Eur J Biochem. 1985, 153 (3): 647-654.
CAS
PubMed
Google Scholar
Harvey AL, Karlsson E: Protease inhibitor homologues from mamba venoms: facilitation of acetylcholine release and interactions with prejunctional blocking toxins. Br J Pharmacol. 1982, 77 (1): 153-161.
PubMed Central
CAS
PubMed
Google Scholar
Ueda E, Kokubu T, Akutsu H, Yamamura Y: Inhibition of angiotensin I converting enzyme and kininase in rabbit plasma by bradykinin potentiating peptide B (Pyr-Gly-Leu-Pro-Arg-Pro-Lys-Ile-Pro-Pro). Experientia. 1971, 27 (9): 1020-1021.
CAS
PubMed
Google Scholar
Yanoshita R, Kasuga A, Inoue S, Ikeda K, Samejima Y: Blomhotin: a novel peptide with smooth muscle contractile activity identified in the venom of Agkistrodon halys blomhoffii. Toxicon. 1999, 37 (12): 1761-1770.
CAS
PubMed
Google Scholar
Hayashi MA, Camargo AC: The bradykinin-potentiating peptides from venom gland and brain of Bothrops jararaca contain highly site specific inhibitors of the somatic angiotensin-converting enzyme. Toxicon. 2005, 45 (8): 1163-1170.
CAS
PubMed
Google Scholar
Robeva A, Politi V, Shannon JD, Bjarnason JB, Fox JW: Synthetic and endogenous inhibitors of snake venom metalloproteinases. Biomed Biochim Acta. 1991, 50 (4–6): 769-773.
CAS
PubMed
Google Scholar
Joubert FJ, Taljaard N: The complete primary structures of two reduced and S-carboxymethylated angusticeps-type toxins from Dendroaspis angusticeps (green mamba) venom. Biochim Biophys Acta. 1980, 623 (2): 449-456.
CAS
PubMed
Google Scholar
Adams M: Tissue factor pathway inhibitor: new insights into an old inhibitor. Semin Thromb Hemost. 2012, 38 (2): 129-134.
CAS
PubMed
Google Scholar
Broze GJ, Girard TJ: Tissue factor pathway inhibitor: structure-function. Front Biosci. 2012, 17: 262-280.
CAS
Google Scholar
Maroney SA, Mast AE: Platelet tissue factor pathway inhibitor modulates intravascular coagulation. Thromb Res. 2012, 129 (Suppl 2): S21-S22.
PubMed Central
CAS
PubMed
Google Scholar
Maroney SA, Ellery PE, Mast AE: Alternatively spliced isoforms of tissue factor pathway inhibitor. Thromb Res. 2010, 125 (Suppl 1): S52-S56.
CAS
PubMed
Google Scholar
Mende TJ, Moreno M: A heat stable paraoxonase (O, O-diethyl O-p-nitrophenyl phosphate O-p-nitrophenyl hydrolase) from Russell's viper venom. Biochemistry. 1975, 14 (17): 3913-3916.
CAS
PubMed
Google Scholar
Rajkovic MG, Rumora L, Barisic K: The paraoxonase 1, 2 and 3 in humans. Biochem Med (Zagreb). 2011, 21 (2): 122-130.
CAS
Google Scholar
Pung YF, Wong PT, Kumar PP, Hodgson WC, Kini RM: Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice. J Biol Chem. 2005, 280 (13): 13137-13147.
CAS
PubMed
Google Scholar
Junqueira-de-Azevedo IL, Ching AT, Carvalho E, Faria F, Nishiyama MY, Ho PL, Diniz MR: Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics. 2006, 173 (2): 877-889.
PubMed Central
CAS
PubMed
Google Scholar
St Pierre L, Fischer H, Adams DJ, Schenning M, Lavidis N, de Jersey J, Masci PP, Lavin MF: Distinct activities of novel neurotoxins from Australian venomous snakes for nicotinic acetylcholine receptors. Cell Mol Life Sci. 2007, 64 (21): 2829-2840.
CAS
PubMed
Google Scholar
Chen T, Bjourson AJ, Orr DF, Kwok H, Rao P, Ivanyi C, Shaw C: Unmasking venom gland transcriptomes in reptile venoms. Anal Biochem. 2002, 311 (2): 152-156.
CAS
PubMed
Google Scholar
Currier RB, Calvete JJ, Sanz L, Harrison RA, Rowley PD, Wagstaff SC: Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment. PLoS One. 2012, 7 (8): e41888-
PubMed Central
CAS
PubMed
Google Scholar
Smeds L, Kunstner A: ConDeTri–a content dependent read trimmer for Illumina data. PloS one. 2011, 6 (10): e26314-
PubMed Central
CAS
PubMed
Google Scholar
Garber M, Grabherr MG, Guttman M, Trapnell C: Computational methods for transcriptome annotation and quantification using RNA-seq. Nature methods. 2011, 8 (6): 469-477.
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology. 2011, 29 (7): 644-652.
PubMed Central
CAS
PubMed
Google Scholar
Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics. 2011, 12: 323-
PubMed Central
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods. 2008, 5 (7): 621-628.
CAS
PubMed
Google Scholar
Ferreira LAF, Mollring T, Lebrun FL, Raida M, Znottka R, Habermehl GG: Structure and effects of a kinin potentiating fraction F (AppF) isolated from Agkistrodon piscivorus piscivorus venom. Toxicon. 1995, 33 (10): 1313-1319.
CAS
PubMed
Google Scholar
Ferreira LAF, Galle A, Raida M, Schrader M, Lebrun I, Habermehl G: Isolation: analysis and properties of three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom. J Protein Chem. 1998, 17 (3): 285-289.
CAS
PubMed
Google Scholar
Greene LJ, Ferreira SH, Stewart JM: Bradykinin potentiating factor. Chest. 1971, 59 (Suppl): 9S-10S.
PubMed
Google Scholar
Higuchi S, Murayama N, Saguchi K, Ohi H, Fujita Y, da Silva NJ, de Siqueira RJ, Lahlou S, Aird SD: A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus. Comp Biochem Physiol C Toxicol Pharmacol. 2006, 144 (2): 107-121.
PubMed
Google Scholar
Kato H, Suzuki T: Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffii. Isolation of five bradykinin potentiators and the amino acid sequences of two of them, Potentiators B and C. Biochemistry. 1971, 10 (6): 972-980.
CAS
PubMed
Google Scholar
Komori Y, Sugihara H: Characterization of a new inhibitor for angiotensin converting enzyme from the venom of Vipera aspis aspis. Int J Biochem. 1990, 22 (7): 767-771.
CAS
PubMed
Google Scholar
Murayama N, Michel GH, Yanoshita R, Samejima Y, Saguchi K, Ohi H, Fujita Y, Higuchi S: cDNA cloning of bradykinin-potentiating peptides-C-type natriuretic peptide precursor, and characterization of the novel peptide Leu3-blomhotin from the venom of Agkistrodon blomhoffi. Eur J Biochem. 2000, 267 (13): 4075-4080.
CAS
PubMed
Google Scholar
Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O: Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry. 1971, 10 (22): 4033-4039.
CAS
PubMed
Google Scholar
Politi V, De Luca G, Di Stazio G, Schinina E, Bossa F: A new peptide from Crotalus atrox snake venom. Peptides. 1985, 6 (Suppl 3): 343-346.
CAS
PubMed
Google Scholar
Soares MR, Oliveira-Carvalho AL, Wermelinger LS, Zingali RB, Ho PL, Junqueira-de-Azevedo Ide L, Diniz MR: Identification of novel bradykinin-potentiating peptides and C-type natriuretic peptide from Lachesis muta venom. Toxicon. 2005, 46 (1): 31-38.
CAS
PubMed
Google Scholar
Wermelinger LS, Dutra DL, Oliveira-Carvalho AL, Soares MR, Bloch C, Zingali RB: Fast analysis of low molecular mass compounds present in snake venom: identification of ten new pyroglutamate-containing peptides. Rapid Commun Mass Spectrom. 2005, 19 (12): 1703-1708.
CAS
PubMed
Google Scholar
Graham RLJ, Graham C, McClean S, Chen T, O'Rourke M, Hirst D, Theakston D, Shaw C: Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers. Biochem Biophys Res Commun. 2005, 338 (3): 1587-1592.
CAS
PubMed
Google Scholar
St Pierre L, Birrell GW, Earl ST, Wallis TP, Gorman JJ, de Jersey J, Masci PP, Lavin MF: Diversity of toxic components from the venom of the evolutionarily distinct black whip snake, Demansia vestigiata. J Proteome Res. 2007, 6 (8): 3093-3107.
CAS
PubMed
Google Scholar