Wahid A, Gelani S, Ashraf M, Foolad MR: Heat tolerance in plants: an overview. Environ Exp Bot. 2007, 61: 199-223. 10.1016/j.envexpbot.2007.05.011.
Article
Google Scholar
Boston RS, Viitanen PV, Vierling E: Molecular chaperones and protein folding in plants. Plant Mol Biol. 1996, 32: 191-222. 10.1007/BF00039383.
Article
CAS
PubMed
Google Scholar
Bukau B, Weissman J, Horwich A: Molecular chaperones and protein quality control. Cell. 2006, 125: 443-451. 10.1016/j.cell.2006.04.014.
Article
CAS
PubMed
Google Scholar
Nakamoto H, Vigh L: The small heat shock proteins and their clients. Cell Mol Life Sci. 2007, 64: 294-306. 10.1007/s00018-006-6321-2.
Article
CAS
PubMed
Google Scholar
Morimoto RI: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008, 22: 1427-1438. 10.1101/gad.1657108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hartl FU, Hayer-Hartl M: Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol. 2009, 16: 574-581. 10.1038/nsmb.1591.
Article
CAS
PubMed
Google Scholar
Pratt WB, Morishima Y, Peng HM, Osawa Y: Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood). 2010, 235: 278-289. 10.1258/ebm.2009.009250.
Article
CAS
Google Scholar
Xu ZS, Li ZY, Chen Y, Chen M, Li LC, Ma YZ: Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int J Mol Sci. 2012, 13: 15706-15723. 10.3390/ijms131215706.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD: Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?. Cell Stress Chaperones. 2001, 6: 177-189. 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Heerklotz D, Döring P, Bonzelius F, Winkelhaus S, Nover L: The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol. 2001, 21: 1759-1768. 10.1128/MCB.21.5.1759-1768.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y: Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep. 2012, 39: 1877-1886. 10.1007/s11033-011-0933-9.
Article
PubMed
Google Scholar
Pelham HR: A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell. 1982, 30: 517-528. 10.1016/0092-8674(82)90249-5.
Article
CAS
PubMed
Google Scholar
Santoro N, Johansson N, Thiele DJ: Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol Cell Biol. 1998, 18: 6340-6352.
Article
CAS
PubMed Central
PubMed
Google Scholar
Guo L, Chen S, Liu K, Liu Y, Ni L, Zhang K, Zhang L: Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Plant Cell Physiol. 2008, 49: 1306-1315. 10.1093/pcp/pcn105.
Article
CAS
PubMed
Google Scholar
Akerfelt M, Morimoto RI, Sistonen L: Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010, 11: 545-555. 10.1038/nrm2938.
Article
CAS
PubMed Central
PubMed
Google Scholar
Scharf KD, Rose S, Zott W, Schöffl F, Nover L: Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast Hsf. EMBO J. 1990, 9: 4495-4501.
CAS
PubMed Central
PubMed
Google Scholar
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J: Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics. 2008, 35: 105-118. 10.1016/S1673-8527(08)60016-8.
Article
CAS
PubMed
Google Scholar
Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ: Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics. 2011, 12: 76-10.1186/1471-2164-12-76.
Article
CAS
PubMed Central
PubMed
Google Scholar
Scharf KD, Berberich T, Ebersberger I, Nover L: The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim Biophys Acta. 2012, 1819: 104-119. 10.1016/j.bbagrm.2011.10.002.
Article
CAS
PubMed
Google Scholar
Zhu ZF, Sun CQ, Fu YC, Qian XY, Yang JS, Wang XK: Isolation and analysis of a novel MYC gene from rice. Yi Chuan Xue Bao. 2005, 32: 393-398. (in Chinese)
CAS
PubMed
Google Scholar
Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W: Transcriptional regulation of Arabidopsis MIR168a and ARGONAUTE1 homeostasis in ABA and abiotic stress responses. Plant Physiol. 2012, 158: 1279-1292. 10.1104/pp.111.188789.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM: Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep. 2009, 42: 486-492. 10.5483/BMBRep.2009.42.8.486.
Article
CAS
PubMed
Google Scholar
Maestrini P, Cavallini A, Rizzo M, Giordani T, Bernardi R, Durante M, Natali L: Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). J Plant Physiol. 2009, 166: 1544-1556. 10.1016/j.jplph.2009.03.014.
Article
CAS
PubMed
Google Scholar
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, Döring P: Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci. 2004, 29: 471-487. 10.1007/BF02712120.
Article
CAS
PubMed
Google Scholar
Scharf KD, Heider H, Hohfeld I, Lyck R, Schmidt E, Nover L: The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol. 1998, 18: 2240-2251.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kotak S, Port M, Ganguli A, Bicker F, Döring P: Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J. 2004, 39: 98-112. 10.1111/j.1365-313X.2004.02111.x.
Article
CAS
PubMed
Google Scholar
Chung E, Kim KM, Lee JH: Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max. J Genet Genomics. 2013, 40: 127-135. 10.1016/j.jgg.2012.12.002.
Article
CAS
PubMed
Google Scholar
Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC: Mining EST databases to resolve evolutionary events in major crop species. Genome. 2004, 47: 868-876. 10.1139/g04-047.
Article
CAS
PubMed
Google Scholar
Blanc G, Barakat A, Guyot R, Cooke R, Delseny M: Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell. 2000, 12: 1093-1101. 10.1105/tpc.12.7.1093.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rose AB: Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol. 2008, 326: 277-290.
CAS
PubMed
Google Scholar
Ikeda M, Ohme-Takagi M: A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol. 2009, 50: 970-975. 10.1093/pcp/pcp048.
Article
CAS
PubMed
Google Scholar
Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F: Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant. 2009, 2: 152-165. 10.1093/mp/ssn095.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K: An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol. 2011, 52: 2136-2146. 10.1093/pcp/pcr143.
Article
CAS
PubMed
Google Scholar
He Y, Li W, Lv J, Jia Y, Wang M, Xia G: Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot. 2012, 63: 1511-1522. 10.1093/jxb/err389.
Article
CAS
PubMed
Google Scholar
Yang A, Dai X, Zhang WH: A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 2012, 63: 2541-2556. 10.1093/jxb/err431.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD: In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 2002, 16: 1555-1567. 10.1101/gad.228802.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nishizawa-Yokoi A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S: Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 2006, 48: 535-547. 10.1111/j.1365-313X.2006.02889.x.
Article
Google Scholar
Ogawa D, Yamaguchi K, Nishiuchi T: High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot. 2007, 58: 3373-3383. 10.1093/jxb/erm184.
Article
CAS
PubMed
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40 (Database issue): D1178-D1186. [http://www.phytozome.net/index.php]
Article
CAS
PubMed Central
PubMed
Google Scholar
Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D, Zhuang M, Huang W, Mueller LA, Bhattacharyya D, Bhaya D, Sobral BW, Beavis W, Meinke DW, Town CD, Somerville C, Rhee SY: The Arabidopsis information resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 2001, 29: 102-105. 10.1093/nar/29.1.102. [http://arabidopsis.org]
Article
CAS
PubMed Central
PubMed
Google Scholar
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR: The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res. 2007, 35 (Database issue): D883-D887. [http://rice.plantbiology.msu.edu]
Article
CAS
PubMed Central
PubMed
Google Scholar
Grant D, Nelson RT, Cannon SB, Shoemaker RC: SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2010, 38 (Database issue): D843-D846. [http://www.soybase.org]
Article
CAS
PubMed Central
PubMed
Google Scholar
Letunic I, Doerks T, Bork P: SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40 (Database issue): D302-D305. [http://smart.embl-heidelberg.de/]
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu RH, Meng JL: MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas. 2003, 25: 317-321. (in Chinese)
PubMed
Google Scholar
Guo AY, Zhu QH, Chen X, Luo JC: GSDS: a gene structure display server. Hereditas. 2007, 29: 1023-1026. (in Chinese). [http://gsds.cbi.pku.edu.cn]
Article
CAS
PubMed
Google Scholar
Knudsen S: Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics. 1999, 15: 356-361. 10.1093/bioinformatics/15.5.356. [http://www.cbs.dtu.dk/services/Promoter/]
Article
CAS
PubMed
Google Scholar
Higo K, Ugawa Y, Iwamoto M, Korenaga T: Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 1999, 27: 297-300. 10.1093/nar/27.1.297. [http://www.dna.affrc.go.jp/PLACE/signalscan.html]
Article
CAS
PubMed Central
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A: Pfam: clans, web tools and services. Nucleic Acids Res. 2006, 34 (Database issue): D247-D251. [http://pfam.xfam.org/]
Article
CAS
PubMed Central
PubMed
Google Scholar
PredictNLS. [https://rostlab.org/owiki/index.php/Predict-NLS]
NetNES. [http://www.cbs.dtu.dk/services/NetNES/]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121. [http://megasoftware.net]
Article
CAS
PubMed Central
PubMed
Google Scholar
Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ: Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol. 2007, 65: 719-732. 10.1007/s11103-007-9237-9.
Article
CAS
PubMed
Google Scholar
Li ZY, Xu ZS, He GY, Yang GX, Chen M, Li LC, Ma YZ: Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis. Biochem Biophys Res Commun. 2012, 427: 731-736. 10.1016/j.bbrc.2012.09.128.
Article
CAS
PubMed
Google Scholar
Li ZY, Xu ZS, He GY, Yang GX, Chen M, Li LC, Ma YZ: A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase. Biochem Biophys Res Commun. 2012, 426: 522-527. 10.1016/j.bbrc.2012.08.118.
Article
CAS
PubMed
Google Scholar
Yoo SD, Cho YH, Sheen J: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007, 2: 1565-1572. 10.1038/nprot.2007.199.
Article
CAS
PubMed
Google Scholar