Jha G, Thakur K, Thakur P: The Venturia apple pathosystem: pathogenicity mechanisms and plant defense responses. J Biomed Biotechnol. 2009, 2009: 1-10.
Google Scholar
Sauphanor B, Dirwimmer C: Ecophyto R&D vers des systèmes de culture économes en produits phytosanitaires. Analyse comparative de différents systèmes en arboriculture fruitière. Tome IV. Edited by: MEEDDAT-MAP-INRA. 2009, France
Google Scholar
Bus VGM, Rikkerink EHA, Caffier V, Durel CE, Plummer KM: Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol. 2011, 49: 391-413. 10.1146/annurev-phyto-072910-095339.
CAS
PubMed
Google Scholar
Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ: Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 2009, 14: 21-29. 10.1016/j.tplants.2008.10.006.
CAS
PubMed
Google Scholar
Chevalier M, Lespinasse Y, Renaudin S: A microscopic study of different classes of symptoms by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol. 1991, 40: 249-256. 10.1111/j.1365-3059.1991.tb02374.x.
Google Scholar
Parisi L, Orts R, Rivenez-Damboise MO, Lefeuvre M, Lagarde MP: Protection intégrée du verger de pommiers de l’an 2000. Tavelure et oïdium: variétés résistantes et lutte raisonnée. Arboriculture Fruitière. 1995, 486: 25-29.
Google Scholar
Lê Van A, Gladieux P, Lemaire C, Cornille A, Giraud T, Durel CE, Caffier V, Le Cam B: Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host. Evol Appl. 2012, 5: 694-704. 10.1111/j.1752-4571.2012.00246.x.
PubMed Central
PubMed
Google Scholar
Parisi L, Lespinasse Y, Guillaumes J, Krüger J: A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology. 1993, 83: 533-537. 10.1094/Phyto-83-533.
Google Scholar
Lateur M, Wagemans C, Populer C: Evaluation of fruit tree genetic resources as sources of polygenic scab resistance in an apple breeding programme. Acta Hortic. 1998, 484: 35-42.
Google Scholar
Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF: Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome. 2003, 46: 224-234. 10.1139/g02-127.
CAS
PubMed
Google Scholar
Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C: Mapping quantitative field resistance against apple scab in a ‘Fiesta’ x ‘Discovery’ progeny. Phytopathology. 2003, 93: 493-501. 10.1094/PHYTO.2003.93.4.493.
CAS
PubMed
Google Scholar
Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE: Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology. 2004, 94: 370-379. 10.1094/PHYTO.2004.94.4.370.
CAS
PubMed
Google Scholar
Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel CE: Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome. 2008, 51: 657-667. 10.1139/G08-046.
CAS
PubMed
Google Scholar
Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L: Venturia inaequalis resistance in apple. Crit Rev Plant Sci. 2006, 25: 473-503. 10.1080/07352680601015975.
CAS
Google Scholar
Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S: Apple contains receptor-like genes homologous to the Cladiosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe In. 2001, 14: 508-515. 10.1094/MPMI.2001.14.4.508.
CAS
Google Scholar
Galli P, Patocchi A, Broggini GA, Gessler C: The Rvi15 (Vr2) apple scab resistance locus contains three TIR-NBS-LRR genes. Mol Plant Microbe In. 2010, 23: 608-617. 10.1094/MPMI-23-5-0608.
CAS
Google Scholar
Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S: The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA. 2004, 101: 886-890. 10.1073/pnas.0304808101.
CAS
PubMed Central
PubMed
Google Scholar
Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA: Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol. 2011, 75: 579-591. 10.1007/s11103-011-9749-1.
CAS
PubMed Central
PubMed
Google Scholar
Schouten HJ, Brinkhuis J, van der Burgh A, Schaart JG, Groenwold R, Broggini GA, Gessler C: Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet Genomes. 2014, 10: 251-260. 10.1007/s11295-013-0678-9.
Google Scholar
Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS: Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe In. 2008, 21: 448-458. 10.1094/MPMI-21-4-0448.
CAS
Google Scholar
Komjanc M, Festi S, Rizzotti L, Cervone F, De Lorenzo G: A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol. 1999, 40: 945-957. 10.1023/A:1006275924882.
CAS
PubMed
Google Scholar
Cova V, Paris R, Passerotti S, Zini E, Gessler C, Pertot I, Loi N, Musetti R, Komjanc M: Mapping and functional analysis of four apple receptor-like protein kinases related to LRPKm1 in HcrVf2-transgenic and wild-type apple plants. Tree Genet Genomes. 2010, 6: 389-403. 10.1007/s11295-009-0257-2.
Google Scholar
Gau AE, Koutb M, Piotrowski M, Kloppstech K: Accumulation of pathogenesis-related proteins in the apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar Remo. Eur J Plant Pathol. 2004, 110: 703-711.
CAS
Google Scholar
Degenhardt J, Al-Masri NA, Kurkcuoglu S, Szankowski I, Gau AE: Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics. 2005, 273: 326-335. 10.1007/s00438-005-1136-7.
CAS
PubMed
Google Scholar
Paris R, Cova V, Pagliarani G, Tartarini S, Komjanc M, Sansavini S: Expression profiling in HcrVf2-transformed apple plants in response to Venturia inaequalis. Tree Genet Genomes. 2009, 5: 81-91. 10.1007/s11295-008-0177-6.
Google Scholar
Paris R, Dondini L, Zannini G, Bastia D, Marasco E, Gualdi V, Rizzi V, Piffanelli P, Mantovani V, Tartarini S: dHPLC efficiency for semi-automated cDNA-AFLP analyses and fragment collection in the apple scab-resistance gene model. Planta. 2012, 235: 1065-1080. 10.1007/s00425-012-1589-y.
CAS
PubMed
Google Scholar
Vanderplank JE: Horizontal and vertical resistance. Disease Resistance in Plants. Edited by: Vanderplank JE. 1984, Orlando, Florida: Academic Press, 57-81.
Google Scholar
Lateur M: Fruit tree genetic resources and Integrated Fruit Production. Acta Hortic. 2000, 525: 317-323.
Google Scholar
Bachem CWB, Oomen RJFJ, Visser RGF: Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep. 1998, 16: 157-173. 10.1023/A:1007468801806.
CAS
Google Scholar
Qubbaj T, Reineke A, Zebitz CPW: Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomol Exp Appl. 2004, 115: 145-152.
Google Scholar
Massart S, Jijakli MH: Identification of differentially expressed genes by cDNA-amplified fragment length polymorphism in the biocontrol agent Pichia anomala (Strain Kh5). Biol control. 2006, 96: 80-86.
CAS
Google Scholar
Yao YX, Li M, Liu Z, Hao YJ, Zhai H: A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple. Plant Physiol Bioch. 2007, 45: 139-145. 10.1016/j.plaphy.2007.01.010.
CAS
Google Scholar
Aldaghi M, Bertaccini A, Lepoivre P: cDNA-AFLP analysis of gene expression changes in apple trees induced by phytoplasma infection during compatible interaction. Eur J Plant Pathol. 2012, 134: 117-130. 10.1007/s10658-012-9970-z.
CAS
Google Scholar
Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK: Analyses of expressed sequence tags from apple. Plant Physiol. 2006, 141: 147-166. 10.1104/pp.105.076208.
PubMed Central
PubMed
Google Scholar
Gasic K, Gonzalez DO, Thimmapuram J, Liu L, Malnoy M, Gong G, Han Y, Vodkin LO, Aldwinckle HS, Carroll NJ, Orvis KS, Goldsbrough P, Clifton S, Pape D, Fulton L, Martin J, Theising B, Wisniewski ME, Fazio G, Feltus FA, Korban SS: Comparative analysis and functional annotation of a large expressed sequence tag collection of apple. Plant Gen. 2009, 2: 23-38. 10.3835/plantgenome2008.11.0014.
CAS
Google Scholar
The EG assembler website. http://egassembler.hgc.jp/,
Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M, Kanehisa M, Endo T, Goto S: EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res. 2006, 34: 459-462.
Google Scholar
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, et al: The genome of the domesticated apple (Malus x domestica Borkh). Nat Genet. 2010, 42: 833-839. 10.1038/ng.654.
CAS
PubMed
Google Scholar
Mathioudakis MM, Maliogka VI, Katsiani AT, Katis NI: Incidence and molecular variability of apple stem pitting and apple chlorotic leaf spot viruses in apple and pear orchards in Greece. J Plant Pathol. 2010, 92: 139-147.
CAS
Google Scholar
Rausher MD: Co-evolution and plant resistance to natural enemies. Nature. 2001, 411: 857-864. 10.1038/35081193.
CAS
PubMed
Google Scholar
Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JDG: cDNA-AFLP Reveals a striking overlap in race-specific resistance and wound response gene expression profiles. The Plant Cell. 2000, 12: 963-977. 10.1105/tpc.12.6.963.
CAS
PubMed Central
PubMed
Google Scholar
Gabriëls SHEJ, Takken FL, Vossen JH, de Jong CF, Liu Q, Turk SCHJ, Wachowski LK, Peters J, Witsenboer HMA, de Wit PJGM, Joosten MHJ: cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol Plant Microbe In. 2006, 19: 567-576. 10.1094/MPMI-19-0567.
Google Scholar
Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q, Huang L, Kang Z: Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol. 2010, 10: 9-10.1186/1471-2229-10-9.
PubMed Central
PubMed
Google Scholar
Shi C, Chaudhary S, Yu K, Park SJ, Navabi A, McClean PE: Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L.) using cDNA-AFLP. Mol Biol Rep. 2011, 38: 75-81. 10.1007/s11033-010-0079-1.
CAS
PubMed
Google Scholar
Li C, Faino L, Dong L, Fan J, Kiss L, De Giovanni C, Lebeda A, Scott J, Matsuda Y, Toyoda H, Lindhout P, Visser RGF, Bonnema G, Bai Y: Characterization of polygenic resistance to powdery mildew in tomato at cytological, biochemical and gene expression level. Mol Plant Pathol. 2012, 13: 148-159. 10.1111/j.1364-3703.2011.00737.x.
CAS
PubMed
Google Scholar
Alignan M, Hewezi T, Petitprez M, Dechamp-Guillaume G, Gentzbittel L: A cDNA microarray approach to decipher sunflower (Helianthus annuus) responses to the necrotrophic fungus Phoma macdonaldii. New Phytol. 2006, 170: 523-536. 10.1111/j.1469-8137.2006.01696.x.
CAS
PubMed
Google Scholar
Valsangiacomo C, Gessler C: Role of the cuticular membrane in ontogenic and Vf resistance of apple leaves against Venturia inaequalis. Phytopathology. 1988, 78: 1066-1069. 10.1094/Phyto-78-1066.
Google Scholar
Silfverberg-Dilworth E, Patocchi A, Gessler C: Evaluation of in vitro grown apple shoot sensitivity to Venturia inaequalis using a detached leaf assay. IOBC-WPRS Bulletin. 2006, 29: 67-74.
Google Scholar
Clark TA, Zeyen RJ, Smith AG, Bushnell WR, Szabo LJ, Vance CP: Host response gene transcript accumulation in relation to visible cytological events during Erysiphe graminis attack in isogenic barley lines differing at the Ml-a locus. Physiol Mol Plant P. 1993, 43: 283-298. 10.1006/pmpp.1993.1058.
CAS
Google Scholar
Ruiz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V: Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol Plant Microbe In. 1999, 12: 976-984. 10.1094/MPMI.1999.12.11.976.
CAS
Google Scholar
Lo SCC, Hipskind JD, Nicholson RL: cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum. Mol Plant Microbe In. 1999, 12: 479-489. 10.1094/MPMI.1999.12.6.479.
CAS
Google Scholar
Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, Ver Loren Van Themaat E, van der Does HC, Hacquard S, Stüber K, Will I, Schmalenbach W, Schmelzer E, O’Connell RJ: Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLOS Pathogens. 2012, 8: 1-15.
Google Scholar
Chisholm S, Coaker G, Day B, Staskawicz BJ: Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 2006, 124: 803-814. 10.1016/j.cell.2006.02.008.
CAS
PubMed
Google Scholar
Dal Cin V, Barbaro E, Danesin M, Murayama H, Velasco R, Ramina A: Fruitlet abscission: a cDNA-AFLP approach to study genes differentially expressed during shedding of immature fruits reveals the involvement of a putative auxin hydrogen symporter in apple (Malus domestica L. Borkh). Gene. 2009, 442: 26-36. 10.1016/j.gene.2009.04.009.
CAS
PubMed
Google Scholar
Baldo A, Norelli JL, Farrell RE, Bassett CL, Aldwinckle HS, Malnoy M: Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus X domestica) with Erwinia amylovora. BMC Plant Biol. 2010, 10: 1-10. 10.1186/1471-2229-10-1.
PubMed Central
PubMed
Google Scholar
Breyne P, Zabeau M: Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol. 2001, 4: 136-142. 10.1016/S1369-5266(00)00149-7.
CAS
PubMed
Google Scholar
Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inzé D, Zabeau M: Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics. 2003, 269: 173-179.
CAS
PubMed
Google Scholar
Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA: The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature. 2000, 26: 403-410.
CAS
Google Scholar
Katagiri F: A global view of defense gene expression regulation – a highly interconnected signaling network. Curr Opin Plant Biol. 2004, 7: 506-511. 10.1016/j.pbi.2004.07.013.
CAS
PubMed
Google Scholar
Steiner B, Kurz H, Lemmens M, Buerstmayr H: Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet. 2008, 118: 753-764.
PubMed Central
PubMed
Google Scholar
Eckey C, Korell M, Leib K, Biedenkopf D, Janses C, Langen G, Kogel K-H: Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol. 2004, 55: 1-15.
CAS
PubMed
Google Scholar
Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ: RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics. 1994, 136: 1421-1434.
CAS
PubMed Central
PubMed
Google Scholar
Gilroy EM, Hein I, van der Hoorn R, Boevink PC, Venter E, McLellan H, Kaffarnik F, Hrubikova K, Shaw J, Holeva M, Lòpez EC, Borras-Hidalgo O, Pritchard L, Loake GJ, Lacomme C, Birch PRJ: Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J. 2007, 52: 1-13. 10.1111/j.1365-313X.2007.03226.x.
CAS
PubMed
Google Scholar
Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F: Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell. 2003, 15: 317-330. 10.1105/tpc.007591.
CAS
PubMed Central
PubMed
Google Scholar
McHale L, Tan X, Koehl P, Michelmore RW: Plant NBS-LRR proteins: adaptable guards. Genome Biology. 2006, 7: 212-
PubMed Central
PubMed
Google Scholar
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J: MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 2002, 415: 977-983. 10.1038/415977a.
CAS
PubMed
Google Scholar
Marrs KA: The functions and regulation of glutathione-S-transferase in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996, 47: 127-158. 10.1146/annurev.arplant.47.1.127.
CAS
PubMed
Google Scholar
Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP: Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 2006, 47: 851-863. 10.1111/j.1365-313X.2006.02837.x.
CAS
PubMed Central
PubMed
Google Scholar
Yang CW, Gonzalez-Lamothe R, Ewan RA, Rowland O, Yoshioka H, Shenton M, Ye H, O’Donnell E, Jones JDG, Sadanandom A: The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell. 2006, 18: 1084-1098. 10.1105/tpc.105.039198.
CAS
PubMed Central
PubMed
Google Scholar
Solomon M, Belenghia B, Delledonne M, Menachema E, Levine A: The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell. 1999, 11: 431-443. 10.1105/tpc.11.3.431.
CAS
PubMed Central
PubMed
Google Scholar
Bolton MD: Primary metabolism and plant defense: fuel for the fire. Mol Plant-Microbe In. 2009, 22: 487-497. 10.1094/MPMI-22-5-0487.
CAS
Google Scholar
Rushton PJ, Somssich IE: Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol. 1998, 1: 311-315. 10.1016/1369-5266(88)80052-9.
CAS
PubMed
Google Scholar
Lee J, Miura K, Bressan RA, Hasegawa PM, Yun DJ: Regulation of plant innate immunity by SUMO E3 ligase. Plant Signal Behav. 2007, 2: 253-254. 10.4161/psb.2.4.3867.
PubMed Central
PubMed
Google Scholar
Sattler SE, Mene-Saffrane L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D: Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell. 2006, 18: 3706-3720. 10.1105/tpc.106.044065.
CAS
PubMed Central
PubMed
Google Scholar
Maeda H, DellaPenna D: Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol. 2007, 10: 260-265. 10.1016/j.pbi.2007.04.006.
CAS
PubMed
Google Scholar
Avrova AO, Stewart HE, De Jong W, Heilbronn J, Lyon GD, Birch PRJ: A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol Plant-Microbe In. 1999, 12: 1114-1119. 10.1094/MPMI.1999.12.12.1114.
CAS
Google Scholar
Hao L, Hsiang T, Goodwin PH: Role of two cysteine proteinases in the susceptible response of Nicotiana benthamiana to Colletotrichum destructivum and the hypersensitive response to Pseudomonas syringae pv. tomato. Plant Sci. 2006, 170: 1001-1009. 10.1016/j.plantsci.2006.01.011.
CAS
Google Scholar
Jansen MAK, Gaba V, Greenberg BM: Higher plants and UV-B radiation: balancing damage, repair and acclimatation. Trends Plant Sci. 1998, 3: 131-135. 10.1016/S1360-1385(98)01215-1.
Google Scholar
Xiong L, Zhu JK: Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002, 25: 131-139. 10.1046/j.1365-3040.2002.00782.x.
CAS
PubMed
Google Scholar
Andaya CB, Ronald PC: A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv oryzae. Physiol Mol Plant P. 2003, 62: 203-208. 10.1016/S0885-5765(03)00060-2.
CAS
Google Scholar
Durel CE, Parisi L, Laurens F, Venisse JS, Jourjon MF: Does the Vf gene maintain a residual resistance to apple scab despite its breakdown by Venturia inaequalis race 6 strains. Acta Hortic. 2000, 538: 575-580.
CAS
Google Scholar
Li ZK, Luo LJ, Mei HW, Paterson AH, Zhao XH, Zhong DB, Wang YP, Yu XQ, Zhu L, Tabien R, Stansel JW, Ying CS: A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Genet Genomics. 1999, 261: 58-63. 10.1007/s004380050941.
CAS
Google Scholar
Brodny U, Nelson RR, Gregory LV: Residual and interactive expression of “defeated” wheat stem rust resistance genes. Phytopathology. 1986, 76: 546-549. 10.1094/Phyto-76-546.
Google Scholar
Nass HA, Pedersen WL, MacKenzie DR, Nelson RR: The residual effect of some defeated powdery mildew Erysiphe graminis f.sp. tritici resistance genes in isolines of winter wheat. Phytopathology. 1981, 71: 1315-1348.
Google Scholar
Talukder ZI, Tharreau D, Price AH: Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol. 2004, 162: 197-209. 10.1111/j.1469-8137.2004.01010.x.
CAS
Google Scholar
Perchepied L, Dogimont C, Pitrat M: Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theor and Appl Genet. 2005, 111: 65-74. 10.1007/s00122-005-1991-y.
CAS
Google Scholar
Gebhardt C, Valkonen JPT: Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol. 2001, 39: 79-102. 10.1146/annurev.phyto.39.1.79.
CAS
PubMed
Google Scholar
Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denancé C, Durel CE: Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet. 2005, 110: 660-668. 10.1007/s00122-004-1891-6.
CAS
PubMed
Google Scholar
Xiao W, Zhao J, Fan S, Li L, Dai J, Xu M: Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays l.). Theor App Genet. 2007, 115: 501-508. 10.1007/s00122-007-0583-4.
CAS
Google Scholar
Wang Z, Taramino G, Yang D, Liu G, Tingey SV, Miao GH, Wang GL: Rice ESTs with disease-resistance gene-or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Genet Genomics. 2001, 265: 302-310. 10.1007/s004380000415.
CAS
PubMed
Google Scholar
Chu Z, Ouyang Y, Zhang J, Yang H, Wang S: Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13. Mol Genet Genomics. 2004, 271: 111-120. 10.1007/s00438-003-0964-6.
CAS
PubMed
Google Scholar
Shi C, Ingvardsen C, Thümmler F, Melchinger AE, Wenzel G, Lübberstedt T: Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol Genet Genomics. 2005, 273: 450-461. 10.1007/s00438-004-1103-8.
CAS
PubMed
Google Scholar
Jensen PJ, Fazio G, Altman N, Praul C, McNellis TW: Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes. BMC Genomics. 2014, 15: 261-10.1186/1471-2164-15-261.
PubMed Central
PubMed
Google Scholar
Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M: Characterization of resistance gene analogues (RGAs) in apple (Malus x domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS One. 2014, 9: e83844-10.1371/journal.pone.0083844.
PubMed Central
PubMed
Google Scholar
Gilad Y, Rifkin SA, Pritchard JK: Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 2008, 24: 408-415. 10.1016/j.tig.2008.06.001.
CAS
PubMed Central
PubMed
Google Scholar
Laurens F, Chevalier M, Dolega E, Gennari F, Goerre M, Fischer C, Kellerhals M, Lateur M, Lefrancq B, Parisi L, Schouten HJ, Tartarini S: Local European cultivars as sources of durable scab resistance in apple. Acta Hort. 2004, 663: 115-122.
Google Scholar
Preece TF: A staining method for the study of apple scab infections. Plant Pathol. 1959, 8: 127-129. 10.1111/j.1365-3059.1959.tb00898.x.
Google Scholar
Rombauts S, van de Peer Y, Rouzé P: AFLPinSilico, simulating AFLP fingerprints. Bioinformatics. 2003, 19: 776-777. 10.1093/bioinformatics/btg090.
CAS
PubMed
Google Scholar
Gasic K, Hernandez A, Korban SS: RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep. 2004, 22: 437a-437g. 10.1007/BF02772687.
Google Scholar
Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21: 3674-3676. 10.1093/bioinformatics/bti610.
CAS
PubMed
Google Scholar
Rozen S, Skaletsky HJ: Primer3 on the www for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by: Krawetz S, Misener S. 2000, Totowa, New Jersey: Humana Press, 365-386.
Google Scholar
Ramakers C, Ruijter JM, Lekanne-Deprez RH, Moorman AFM: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003, 339: 62-66. 10.1016/S0304-3940(02)01423-4.
CAS
PubMed
Google Scholar
Gadiou S, Kundu JK: Evaluation of reference genes for the relative quantification of apple stem grooving virus and apple mosaic virus in apple trees. Indian J Virol. 2012, 23: 39-41. 10.1007/s13337-012-0065-4.
CAS
PubMed Central
PubMed
Google Scholar
Genome Database for Rosaceae. http://www.rosaceae.org/,
HIDRAS (High-quality Disease Resistant Apples for Sustainable Agriculture). website: http://www.hidras.unimi.it/HiDRAS-SSRdb/pages/index.php