Falkmer S: Origin of the parenchymal cells of the endocrine pancreas: some phylogenetic and ontogenetic aspects. Front Gastrointest Res. 1995, 23: 2-29.
Google Scholar
Youson JH, Al-Mahrouki AA: Ontogenetic and phylogenetic development of the endocrine pancreas (islet organ) in fishes. Gen Comp Endocrinol. 1999, 116: 303-335. 10.1006/gcen.1999.7376.
CAS
PubMed
Google Scholar
Heller RS: The comparative anatomy of islets. Islets. 2010, 654: 21-37. 10.1007/978-90-481-3271-3_2.
Google Scholar
Epple A, Brinn JE: Pancreatic Islets. Vertebrate Endocrinology: Fundamentals and Biomedical Implications. 1986, New York: Academic, 279-317.
Google Scholar
Shimeld SM, Holland PWH: Vertebrate innovations. Proc Natl Acad Sci U S A. 2000, 97: 4449-4452. 10.1073/pnas.97.9.4449.
CAS
PubMed Central
PubMed
Google Scholar
Khaner O: Evolutionary innovations of the vertebrates. Integr Zool. 2007, 2: 60-67. 10.1111/j.1749-4877.2007.00045.x.
PubMed
Google Scholar
Ainali C, Simon M, Freilich S, Espinosa O, Hazelwood L, Tsoka S, Ouzounis CA, Hancock JM: Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins. BMC Evol Biol. 2011, 11: 142-10.1186/1471-2148-11-142.
CAS
PubMed Central
PubMed
Google Scholar
Rashidi A, Kirkwood TBL, Shanley DP: Metabolic evolution suggests an explanation for the weakness of antioxidant defences in beta-cells. Mech Ageing Dev. 2009, 130: 216-221. 10.1016/j.mad.2008.12.007.
CAS
PubMed
Google Scholar
Madsen OD: Pancreas phylogeny and ontogeny in relation to a “pancreatic stem cell”. C R Biol. 2007, 330: 534-537. 10.1016/j.crvi.2007.03.006.
CAS
PubMed Central
PubMed
Google Scholar
Wu Q, Brown MR: Signaling and function of insulin-like peptides in insects. Annu Rev Entomol. 2006, 51: 1-24. 10.1146/annurev.ento.51.110104.151011.
CAS
PubMed
Google Scholar
Anderson WG, Ali MF, Einarsdottir IE, Schaffer L, Hazon N, Conlon JM: Purification, characterization, and biological activity of insulins from the spotted dogfish, Scyliorhinus canicula, and the hammerhead shark, Sphyrna lewini. Gen Comp Endocrinol. 2002, 126: 113-122. 10.1006/gcen.2002.7787.
CAS
PubMed
Google Scholar
Conlon JM, Hazon N, Thim L: Primary structures of peptides derived from proglucagon isolated from the pancreas of the elasmobranch fish, Scyliorhinus canicula. Peptides. 1994, 15: 163-167. 10.1016/0196-9781(94)90186-4.
CAS
PubMed
Google Scholar
Conlon JM, Balasubramaniam A, Hazon N: Structural characterization and biological activity of a neuropeptide Y-related peptide from the dogfish, Scyliorhinus canicula. Endocrinology. 1991, 128: 2273-2279. 10.1210/endo-128-5-2273.
CAS
PubMed
Google Scholar
Conlon JM, Bjenning C, Hazon N: Structural characterization of neuropeptide Y from the brain of the dogfish, Scyliorhinus canicula. Peptides. 1992, 13: 493-497. 10.1016/0196-9781(92)90080-M.
CAS
PubMed
Google Scholar
Conlon JM, Dafgard E, Falkmer S, Thim L: A glucagon-like peptide, structurally related to mammalian oxyntomodulin, from the pancreas of a holocephalan fish, Hydrolagus colliei. Biochem J. 1987, 245: 851-855.
CAS
PubMed Central
PubMed
Google Scholar
El-Salhy M: Immunocytochemical investigation of the gastro-enteropancreatic (GEP) neurohormonal peptides in the pancreas and gastrointestinal tract of the dogfish Squalus acanthias. Histochem Cell Biol. 1984, 80: 193-205.
CAS
Google Scholar
Kobayashi K, Syed Ali S: Cell types of the endocrine pancreas in the shark Scyliorhinus stellaris as revealed by correlative light and electron microscopy. Cell Tissue Res. 1981, 215: 475-490.
CAS
PubMed
Google Scholar
Sekine Y, Yui R: Immunohistochemical study of the pancreatic endocrine cells of the ray, Dasyatis akajei. Arch Histol Jpn. 1981, 44: 95-101. 10.1679/aohc1950.44.95.
CAS
PubMed
Google Scholar
Diamare V: Vergleichende anatomisch-physiologische Studien fiber den Pankreasdiabetes. III Mitt. Zentralblatt für Physiologie. 1908, 21: 863-869.
Google Scholar
Diamare V: Weitere Beobachtungen über den Experimentaldiabetes nach Pankreasextirpation bei Selachier. Zentralblatt für Physiologie. 1906, 20: 617-620.
Google Scholar
de Roos R, de Roos CC, Werner CS, Werner H: Plasma levels of glucose, alanine, lactate, and [beta]-hydroxybutyrate in the unfed spiny dogfish shark (Squalus acanthias) after surgery and following mammalian insulin infusion. Gen Comp Endocrinol. 1985, 58: 28-43. 10.1016/0016-6480(85)90133-9.
CAS
Google Scholar
de Roos R, de Roos CC: Severe insulin-induced hypoglycemia in the spiny dogfish shark (Squalus acanthias). Gen Comp Endocrinol. 1979, 37: 186-191. 10.1016/0016-6480(79)90106-0.
CAS
Google Scholar
Patent GJ: The chondrichthyean endocrine pancreas: What are its functions?. Am Zool. 1973, 13: 639-651.
CAS
Google Scholar
Zammit VA, Newsholme EA: Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem J. 1979, 184: 313-322.
CAS
PubMed Central
PubMed
Google Scholar
Walsh PJ, Kajimura M, Mommsen TP, Wood CM: Metabolic organization and effects of feeding on enzyme activities of the dogfish shark (Squalus acanthias) rectal gland. J Exp Biol. 2006, 209: 2929-2938. 10.1242/jeb.02329.
CAS
PubMed
Google Scholar
Polakof S, Mommsen TP, Soengas JL: Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B Biochem Mol Biol. 2011, 160: 123-149. 10.1016/j.cbpb.2011.07.006.
CAS
PubMed
Google Scholar
Patent GJ: Comparison of some hormonal effects on carbohydrate metabolism in an elasmobranch (Squalus acanthias) and a holocephalan (Hydrolagus colliei). Gen Comp Endocrinol. 1970, 14: 215-242. 10.1016/0016-6480(70)90051-1.
CAS
PubMed
Google Scholar
Speers-Roesch B, Treberg JR: The unusual energy metabolism of elasmobranch fishes. Comp Biochem Physiol A Mol Integr Physiol. 2010, 155: 417-434. 10.1016/j.cbpa.2009.09.031.
PubMed
Google Scholar
Coolen M, Menuet A, Chassoux D, Compagnucci C, Henry S, Lévèque L, Da Silva C, Gavory F, Samain S, Wincker P: The dogfish Scyliorhinus canicula, a reference in jawed vertebrates. CSH Protoc. 2008, doi:10.1101/pdb.emo111
Google Scholar
Mulley JF, Holland PWH: Parallel retention of Pdx2 genes in cartilaginous fish and coelacanths. Mol Biol Evol. 2010, 27: 2386-2391. 10.1093/molbev/msq121.
CAS
PubMed Central
PubMed
Google Scholar
Richards V, Suzuki H, Stanhope M, Shivji M: Characterization of the heart transcriptome of the white shark (Carcharodon carcharias). BMC Genomics. 2013, 14: 697-10.1186/1471-2164-14-697.
CAS
PubMed Central
PubMed
Google Scholar
Conlon JM, Reinecke M, Thorndyke MC, Falkmer S: Insulin and other islet hormones (somatostatin, glucagon and PP) in the neuroendocrine system of some lower vertebrates and that of invertebrates: a minireview. Horm Metab Res. 1988, 20: 406-410. 10.1055/s-2007-1010849.
CAS
PubMed
Google Scholar
Quan FB, Kenigfest NB, Mazan S, Tostivint H: Molecular cloning of the cDNAs encoding three somatostatin variants in the dogfish (Scylorhinus canicula). Gen Comp Endocrinol. 2013, 180: 1-6.
CAS
PubMed
Google Scholar
Larsson TA, Tay BH, Sundstrom G, Fredriksson R, Brenner S, Larhammar D, Venkatesh B: Neuropeptide Y-family peptides and receptors in the elephant shark, Callorhinchus milii confirm gene duplications before the gnathostome radiation. Genomics. 2009, 93: 254-260. 10.1016/j.ygeno.2008.10.001.
CAS
PubMed
Google Scholar
Falkmer S: Phylogeny and ontogeny of the neuroendocrine cells of the gastrointestinal tract. Endocrinol Metab Clin North Am. 1993, 22: 731-752.
CAS
PubMed
Google Scholar
Larhammar D: Evolution of neuropeptide Y, peptide YY and pancreatic polypeptide. Regul Pept. 1996, 62: 1-11. 10.1016/0167-0115(95)00169-7.
CAS
PubMed
Google Scholar
Sundstrom G, Larsson TA, Brenner S, Venkatesh B, Larhammar D: Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. Gen Comp Endocrinol. 2008, 155: 705-716. 10.1016/j.ygcen.2007.08.016.
PubMed
Google Scholar
Conlon JM, Bjenning C, Moon TW, Youson JH, Thim L: Neuropeptide Y-related peptides from the pancreas of a teleostean (eel), holostean (bowfin) and elasmobranch (skate) fish. Peptides. 1991, 12: 221-226. 10.1016/0196-9781(91)90003-8.
CAS
PubMed
Google Scholar
El-Salhy M, Grimelius L, Emson PC, Falkmer S: Polypeptide YY-and neuropeptide Y-immunoreactive cells and nerves in the endocrine and exocrine pancreas of some vertebrates: an onto-and phylogenetic study. Histochem J. 1987, 19: 111-117. 10.1007/BF01682755.
CAS
PubMed
Google Scholar
Reinecke M, Weimar E, Maake C, Drakenberg K, Falkmer S, Sara VR: IGF-2-like peptides are present in insulin cells of the elasmobranchian endocrine pancreas: an immunohistochemical and chromatographic study. Histochem Cell Biol. 1994, 102: 365-371.
CAS
Google Scholar
Moghimzadeh E, Ekman R, Hakanson R, Yanaihara N, Sundler F: Neuronal gastrin-releasing peptide in the mammalian gut and pancreas. Neuroscience. 1983, 10: 553-563. 10.1016/0306-4522(83)90152-5.
CAS
PubMed
Google Scholar
Cornelio DB, Roesler R, Schwartsmann G: Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol. 2007, 18: 1457-1466. 10.1093/annonc/mdm058.
CAS
PubMed
Google Scholar
Raddatz R, Wilson AE, Artymyshyn R, Bonini JA, Borowsky B, Boteju LW, Zhou S, Kouranova EV, Nagorny R, Guevarra MS: Identification and characterization of two neuromedin U receptors differentially expressed in peripheral tissues and the central nervous system. J Biol Chem. 2000, 275: 32452-32459. 10.1074/jbc.M004613200.
CAS
PubMed
Google Scholar
Frederickson RC: Enkephalin pentapeptides–a review of current evidence for a physiological role in vertebrate neurotransmission. Life Sci. 1977, 21: 23-42. 10.1016/0024-3205(77)90421-0.
CAS
PubMed
Google Scholar
Yoshimasa T, Nakao K, Ohtsuki H, Li S, Imura H: Methionine-enkephalin and leucine-enkephalin in human sympathoadrenal system and pheochromocytoma. J Clin Invest. 1982, 69: 643-650. 10.1172/JCI110491.
CAS
PubMed Central
PubMed
Google Scholar
Leighton B, Atkinson A, Coghlan MP: Small molecule glucokinase activators as novel anti-diabetic agents. Biochem Soc Trans. 2005, 33: 371-374. 10.1042/BST0330371.
CAS
PubMed
Google Scholar
Fajans SS, Bell GI, Polonsky KS: Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001, 345: 971-980. 10.1056/NEJMra002168.
CAS
PubMed
Google Scholar
Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell GI, Zouali H, Lesage S, Velho G, Iris F, Passa PH: Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature. 1992, 356: 721-722. 10.1038/356721a0.
CAS
PubMed
Google Scholar
De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, Pipeleers D, Schuit F: Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest. 1995, 96: 2489-2495. 10.1172/JCI118308.
CAS
PubMed Central
PubMed
Google Scholar
Ferrer J, Benito C, Gomis R: Pancreatic islet GLUT2 glucose transporter mRNA and protein expression in humans with and without NIDDM. Diabetes. 1995, 44: 1369-1374. 10.2337/diab.44.12.1369.
CAS
PubMed
Google Scholar
Richardson CC, Hussain K, Jones PM, Persaud S, Lobner K, Boehm A, Clark A, Christie MR: Low levels of glucose transporters and channels in human pancreatic beta cells early in development. Diabetologia. 2007, 50: 1000-1005. 10.1007/s00125-007-0644-x.
CAS
PubMed
Google Scholar
Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy MR: Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol. 1993, 7: 1275-1283.
CAS
PubMed
Google Scholar
Miller CP, McGehee RE, Habener JF: IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 1994, 13: 1145-1156.
CAS
PubMed Central
PubMed
Google Scholar
Ohlsson H, Karlsson K, Edlund T: IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 1993, 12: 4251-4259.
CAS
PubMed Central
PubMed
Google Scholar
Boam DS, Docherty K: A tissue-specific nuclear factor binds to multiple sites in the human insulin-gene enhancer. Biochem J. 1989, 264: 233-239.
CAS
PubMed Central
PubMed
Google Scholar
Marshak S, Benshushan E, Shoshkes M, Havin L, Cerasi E, Melloul D: Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3beta transcription factors mediate beta-cell-specific expression. Mol Cell Biol. 2000, 20: 7583-7590. 10.1128/MCB.20.20.7583-7590.2000.
CAS
PubMed Central
PubMed
Google Scholar
Ohneda K, Mirmira RG, Wang J, Johnson JD, German MS: The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol Cell Biol. 2000, 20: 900-911. 10.1128/MCB.20.3.900-911.2000.
CAS
PubMed Central
PubMed
Google Scholar
Docherty HM, Hay CW, Ferguson LA, Barrow J, Durward E, Docherty K: Relative contribution of PDX-1, MafA and E47/β2 to the regulation of the human insulin promoter. Biochem J. 2005, 389: 813-820. 10.1042/BJ20041891.
CAS
PubMed Central
PubMed
Google Scholar
Stoffers DA, Ferrer J, Clarke WL, Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997, 17: 138-141. 10.1038/ng1097-138.
CAS
PubMed
Google Scholar
Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997, 15: 106-110. 10.1038/ng0197-106.
CAS
PubMed
Google Scholar
Schwitzgebel VM, Mamin A, Brun T, Ritz-Laser B, Zaiko M, Maret A, Jornayvaz FR, Theintz GE, Michielin O, Melloul D: Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab. 2003, 88: 4398-4406. 10.1210/jc.2003-030046.
CAS
PubMed
Google Scholar
Mulley JF, Holland PWH: Genomic organisation of the seven ParaHox genes of coelacanths. J Exp Zool B Mol Dev Evol. 2014, 322: 352-358. 10.1002/jez.b.22513.
CAS
PubMed Central
PubMed
Google Scholar
Poulin G, Turgeon B, Drouin J: NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol. 1997, 17: 6673-6682.
CAS
PubMed Central
PubMed
Google Scholar
Chao CS, Loomis ZL, Lee JE, Sussel L: Genetic identification of a novel NeuroD1 function in the early differentiation of islet α, PP and ϵ cells. Dev Biol. 2007, 312: 523-532. 10.1016/j.ydbio.2007.09.057.
CAS
PubMed Central
PubMed
Google Scholar
Chae JH, Stein GH, Lee JE: NeuroD: the predicted and the surprising. Mol Cells. 2004, 18: 271-288.
CAS
PubMed
Google Scholar
Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, Saad M, Warram JH, Montminy M, Krolewski AS: Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999, 23: 323-328. 10.1038/15500.
CAS
PubMed
Google Scholar
Naya FJ, Stellrecht CM, Tsai MJ: Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 1995, 9: 1009-1019. 10.1101/gad.9.8.1009.
CAS
PubMed
Google Scholar
Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ: Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997, 11: 2323-2334. 10.1101/gad.11.18.2323.
CAS
PubMed Central
PubMed
Google Scholar
Qiu Y, Guo M, Huang S, Stein R: Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol Cell Biol. 2002, 22: 412-420. 10.1128/MCB.22.2.412-420.2002.
CAS
PubMed Central
PubMed
Google Scholar
Zhang H, Wang WP, Guo T, Yang JC, Chen P, Ma KT, Guan YF, Zhou CY: The LIM-homeodomain protein ISL1 activates insulin gene promoter directly through synergy with BETA2. J Mol Biol. 2009, 392: 566-577. 10.1016/j.jmb.2009.07.036.
CAS
PubMed
Google Scholar
Peng SY, Wang WP, Meng J, Li T, Zhang H, Li Y, Chen P, Ma KT, Zhou CY: ISL1 physically interacts with BETA2 to promote insulin gene transcriptional synergy in non-beta cells. Biochim Biophys Acta. 2005, 1731: 154-159. 10.1016/j.bbaexp.2005.08.013.
CAS
PubMed
Google Scholar
Glick E, Leshkowitz D, Walker MD: Transcription factor BETA2 acts cooperatively with E2A and PDX1 to activate the insulin gene promoter. J Biol Chem. 2000, 275: 2199-2204. 10.1074/jbc.275.3.2199.
CAS
PubMed
Google Scholar
Courtois G, Morgan JG, Campbell LA, Fourel G, Crabtree GR: Interaction of a liver-specific nuclear factor with the fibrinogen and alpha 1-antitrypsin promoters. Science. 1987, 238: 688-692. 10.1126/science.3499668.
CAS
PubMed
Google Scholar
Brooks AR, Levy-Wilson B: Hepatocyte nuclear factor 1 and C/EBP are essential for the activity of the human apolipoprotein B gene second-intron enhancer. Mol Cell Biol. 1992, 12: 1134-1148.
CAS
PubMed Central
PubMed
Google Scholar
Maire P, Wuarin J, Schibler U: The role of cis-acting promoter elements in tissue-specific albumin gene expression. Science. 1989, 244: 343-346. 10.1126/science.2711183.
CAS
PubMed
Google Scholar
Emens LA, Landers DW, Moss LG: Hepatocyte nuclear factor 1 alpha is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc Natl Acad Sci U S A. 1992, 89: 7300-7304. 10.1073/pnas.89.16.7300.
CAS
PubMed Central
PubMed
Google Scholar
Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A, Pick AJ, Baldwin A, Velho G, Froguel P: Defective insulin secretion in hepatocyte nuclear factor 1 alpha-deficient mice. J Clin Invest. 1998, 101: 2215-2221. 10.1172/JCI2548.
CAS
PubMed Central
PubMed
Google Scholar
Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV: Mutations in the hepatocyte nuclear factor-1 alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 1996, 384: 455-458. 10.1038/384455a0.
CAS
PubMed
Google Scholar
Vaxillaire M, Rouard M, Yamagata K, Oda N, Kaisaki PJ, Boriraj VV, Chevre JC, Boccio V, Cox RD, Lathrop GM: Identification of nine novel mutations in the hepatocyte nuclear factor 1 alpha aene associated with maturity-onset diabetes of the young (MODY3). Hum Mol Genet. 1997, 6: 583-586. 10.1093/hmg/6.4.583.
CAS
PubMed
Google Scholar
Bjorkhaug L, Sagen JV, Thorsby P, Sovik O, Molven A, Njolstad PR: Hepatocyte nuclear factor-1a gene mutations and diabetes in Norway. J Clin Endocrinol Metab. 2003, 88: 920-931. 10.1210/jc.2002-020945.
CAS
PubMed
Google Scholar
Iype T, Taylor DG, Ziesmann SM, Garmey JC, Watada H, Mirmira RG: The transcriptional repressor Nkx6. 1 also functions as a deoxyribonucleic acid context-dependent transcriptional activator during pancreatic β-cell differentiation: evidence for feedback activation of the nkx6.1 gene by Nkx6. 1. Mol Endocrinol. 2004, 18: 1363-1375. 10.1210/me.2004-0006.
CAS
PubMed
Google Scholar
Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Cruz FD, Schwitzgebel V, Hayes-Jordan A, German M: Homeobox gene Nkx6. 1 lies downstream of Nkx2. 2 in the major pathway of beta-cell formation in the pancreas. Development. 2000, 127: 5533-5540.
CAS
PubMed
Google Scholar
Schisler JC, Jensen PB, Taylor DG, Becker TC, Knop FK, Takekawa S, German M, Weir GC, Lu D, Mirmira RG: The Nkx6. 1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proc Natl Acad Sci U S A. 2005, 102: 7297-7302. 10.1073/pnas.0502168102.
CAS
PubMed Central
PubMed
Google Scholar
Aramata S, Han SI, Kataoka K: Roles and regulation of transcription factor MafA in islet beta-cells. Endocr J. 2007, 54: 659-666. 10.1507/endocrj.KR-101.
CAS
PubMed
Google Scholar
Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, Oishi H, Hamada M, Morito N, Hasegawa K: MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol. 2005, 25: 4969-4976. 10.1128/MCB.25.12.4969-4976.2005.
CAS
PubMed Central
PubMed
Google Scholar
Dorrell C, Schug J, Lin CF, Canaday PS, Fox AJ, Smirnova O, Bonnah R, Streeter PR, Stoeckert CJ, Kaestner KH: Transcriptomes of the major human pancreatic cell types. Diabetologia. 2011, 54: 2832-2344. 10.1007/s00125-011-2283-5.
CAS
PubMed
Google Scholar
Kutlu B, Burdick D, Baxter D, Rasschaert J, Flamez D, Eizirik D, Welsh N, Goodman N, Hood L: Detailed transcriptome atlas of the pancreatic beta cell. BMC Med Genomics. 2009, 2: 3-10.1186/1755-8794-2-3.
PubMed Central
PubMed
Google Scholar
Kong YM, MacDonald RJ, Wen X, Yang P, Barbera VM, Swift GH: A comprehensive survey of DNA-binding transcription factor gene expression in human fetal and adult organs. Gene Expr Patterns. 2006, 6: 678-686. 10.1016/j.modgep.2006.01.002.
CAS
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28: 27-30. 10.1093/nar/28.1.27.
CAS
PubMed Central
PubMed
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35: W182-W185. 10.1093/nar/gkm321.
PubMed Central
PubMed
Google Scholar
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M: Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014, 42: D199-D205. 10.1093/nar/gkt1076.
CAS
PubMed Central
PubMed
Google Scholar
Taylor JS, Van de Peer Y, Meyer A: Genome duplication, divergent resolution and speciation. Trends Genet. 2001, 17: 299-301. 10.1016/S0168-9525(01)02318-6.
CAS
PubMed
Google Scholar
Jensen J: Gene regulatory factors in pancreatic development. Dev Dyn. 2003, 229: 176-200.
Google Scholar
Habener JF, Kemp DM, Thomas MK: Minireview: transcriptional regulation in pancreatic development. Endocrinology. 2005, 146: 1025-1034. 10.1210/en.2004-1576.
CAS
PubMed
Google Scholar
Rudnick A, Ling TY, Odagiri H, Rutter WJ, German MS: Pancreatic beta cells express a diverse set of homeobox genes. Proc Natl Acad Sci U S A. 1994, 91: 12203-12207. 10.1073/pnas.91.25.12203.
CAS
PubMed Central
PubMed
Google Scholar
Zhong Y, Holland PWH: HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology. Evol Dev. 2011, 13: 567-568. 10.1111/j.1525-142X.2011.00513.x.
PubMed Central
PubMed
Google Scholar
Zhong YF, Butts T, Holland PWH: HomeoDB: a database of homeobox gene diversity. Evol Dev. 2008, 10: 516-518. 10.1111/j.1525-142X.2008.00266.x.
CAS
PubMed
Google Scholar
Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A: Pfam: clans, web tools and services. Nucleic Acids Res. 2006, 34: D247-D251. 10.1093/nar/gkj149.
CAS
PubMed Central
PubMed
Google Scholar
Ballantyne JS: Jaws: the inside story. The metabolism of elasmobranch fishes. Comp Biochem Physiol B Biochem Mol Biol. 1997, 118: 703-742. 10.1016/S0305-0491(97)00272-1.
Google Scholar
Moon TW, Mommsen TP: Enzymes of intermediary metabolism in tissue of the little skate, Raja erinacea. J Exp Zool. 2005, 244: 9-15.
Google Scholar
Walsh PJ, Kajimura M, Mommsen TP, Wood CM: Metabolic organization and effects of feeding on enzyme activities of the dogfish shark (Squalus acanthias) rectal gland. J Exp Biol. 2006, 209: 2929-2938. 10.1242/jeb.02329.
CAS
PubMed
Google Scholar
Zendzian EN, Barnard EA: Distributions of pancreatic ribonuclease, chymotrypsin, and trypsin in vertebrates. Arch Biochem Biophys. 1967, 122: 699-713. 10.1016/0003-9861(67)90180-4.
CAS
PubMed
Google Scholar
Prahl JW, Neurath H: Pancreatic enzymes of the spiny pacific dogfish. I. Cationic chymotrypsinogen and chymotrypsin. Biochem. 1966, 5: 2131-2146. 10.1021/bi00870a047.
CAS
Google Scholar
Prahl JW, Neurath H: Pancreatic enzymes of the spiny pacific dogfish. II. Procarboxypeptidase B and carboxypeptidase B. Biochem. 1966, 5: 4137-4145. 10.1021/bi00876a050.
CAS
Google Scholar
Neurath H, Lacko AG: Procarboxypeptidase A and carboxypeptidase A of the spiny Pacific dogfish (Squalus acanthias). Biochem. 1970, 9: 4680-4690. 10.1021/bi00826a010.
CAS
Google Scholar
Dong W, Fricker LD, Day R: Carboxypeptidase D is a potential candidate to carry out redundant processing functions of carboxypeptidase E based on comparative distribution studies in the rat central nervous system. Neuroscience. 1999, 89: 1301-1317. 10.1016/S0306-4522(98)00381-9.
CAS
PubMed
Google Scholar
Fricker LD: Carboxypeptidase E. Annu Rev Physiol. 1988, 50: 309-321. 10.1146/annurev.ph.50.030188.001521.
CAS
PubMed
Google Scholar
Brockerhoff H, Hoyle RJ: Hydrolysis of triglycerides by the pancreatic lipase of a skate. Biochim Biophys Acta. 1965, 98: 435-436. 10.1016/0005-2760(65)90136-0.
CAS
PubMed
Google Scholar
Patton JS: High levels of pancreatic nonspecific lipase in rattlesnake and leopard shark. Lipids. 1975, 10: 562-564. 10.1007/BF02532361.
CAS
PubMed
Google Scholar
Patton JS, Warner TG, Benson AA: Partial characterization of the bile salt-dependent triacylglycerol lipase from the leopard shark pancreas. Biochim Biophys Acta. 1977, 486: 322-330. 10.1016/0005-2760(77)90028-5.
CAS
PubMed
Google Scholar
Sternby B, Larsson A, Borgstrom B: Evolutionary studies on pancreatic colipase. Biochim Biophys Acta. 1983, 750: 340-345. 10.1016/0005-2760(83)90038-3.
CAS
PubMed
Google Scholar
Sternby B, Engstrom A, Hellman U: Purification and characterization of pancreatic colipase from the dogfish (Squalus acanthius). Biochim Biophys Acta. 1984, 789: 159-163. 10.1016/0167-4838(84)90200-0.
CAS
PubMed
Google Scholar
Bacha AB, Karray A, Daoud L, Bouchaala E, Ali MB, Gargouri Y, Ali YB: Biochemical properties of pancreatic colipase from the common stingray Dasyatis pastinaca. Lipids Health Dis. 2011, 10: 69-10.1186/1476-511X-10-69.
PubMed Central
PubMed
Google Scholar
Arntfield ME, van der Kooy D: β-Cell evolution: how the pancreas borrowed from the brain. Bioessays. 2011, 33: 582-587. 10.1002/bies.201100015.
PubMed
Google Scholar
Upchurch BH, Aponte GW, Leiter AB: Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor. Development. 1994, 120: 245-252.
CAS
PubMed
Google Scholar
Jackerott M, Oster A, Larsson LI: PYY in developing murine islet cells: comparisons to development of islet hormones, NPY, and BrdU incorporation. J Histochem Cytochem. 1996, 44: 809-817. 10.1177/44.8.8756753.
CAS
PubMed
Google Scholar
Teitelman G, Alpert S, Polak JM, Martinez A, Hanahan D: Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development. 1993, 118: 1031-1039.
CAS
PubMed
Google Scholar
Schonhoff S, Baggio L, Ratineau C, Ray SK, Lindner J, Magnuson MA, Drucker DJ, Leiter AB: Energy homeostasis and gastrointestinal endocrine differentiation do not require the anorectic hormone peptide YY. Mol Cell Biol. 2005, 25: 4189-4199. 10.1128/MCB.25.10.4189-4199.2005.
CAS
PubMed Central
PubMed
Google Scholar
Chang C, Shen W, Rozenfeld S, Lawrence HJ, Largman C, Cleary ML: Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev. 1995, 9: 663-674. 10.1101/gad.9.6.663.
CAS
PubMed
Google Scholar
Liu A, Desai BM, Stoffers DA: Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity. Mol Cell Biol. 2004, 24: 4372-4383. 10.1128/MCB.24.10.4372-4383.2004.
CAS
PubMed Central
PubMed
Google Scholar
Peshavaria M, Henderson E, Sharma A, Wright CV, Stein R: Functional characterization of the transactivation properties of the PDX-1 homeodomain protein. Mol Cell Biol. 1997, 17: 3987-3996.
CAS
PubMed Central
PubMed
Google Scholar
Furlong RF, Mulley JF: ParaHox cluster evolution-hagfish and beyond. Zoolog Sci. 2008, 25: 955-959. 10.2108/zsj.25.955.
CAS
PubMed
Google Scholar
Furlong RF, Younger R, Kasahara M, Reinhardt R, Thorndyke M, Holland PWH: A degenerate ParaHox gene cluster in a degenerate vertebrate. Mol Biol Evol. 2007, 24: 2681-2686. 10.1093/molbev/msm194.
CAS
PubMed
Google Scholar
Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ: The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 2008, 18: 1100-1111. 10.1101/gr.073676.107.
CAS
PubMed Central
PubMed
Google Scholar
Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu K: The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008, 453: 1064-1072. 10.1038/nature06967.
CAS
PubMed
Google Scholar
Le Roith D, Shiloach J, Roth J: Is there an earlier phylogenetic precursor that is common to both the nervous and endocrine systems?. Peptides. 1982, 3: 211-215. 10.1016/0196-9781(82)90080-8.
CAS
PubMed
Google Scholar
Larhammar D, Bergqvist CA: Ancient grandeur of the vertebrate neuropeptide Y system shown by the coelacanth latimeria chalumnae. Front Neurosci. 2013, 7: 27-
PubMed Central
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011, 29: 644-652. 10.1038/nbt.1883.
CAS
PubMed Central
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21: 3674-3676. 10.1093/bioinformatics/bti610.
CAS
PubMed
Google Scholar
Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36: 3420-3435. 10.1093/nar/gkn176.
CAS
PubMed Central
PubMed
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinformatics. 2009, 10: 421-10.1186/1471-2105-10-421.
PubMed Central
PubMed
Google Scholar