Ariel FD, Manavella PA, Dezar CA, Chan RL: The true story of the HD-Zip family. Trends Plant Sci. 2007, 12: 419-426. 10.1016/j.tplants.2007.08.003.
CAS
PubMed
Google Scholar
Mukherjee K, Brocchieri L, Burglin TR: A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol. 2009, 26: 2775-2794. 10.1093/molbev/msp201.
CAS
PubMed Central
PubMed
Google Scholar
Zalewski CS, Floyd SK, Furumizu C, Sakakibara K, Stevenson DW, Bowman JL: Evolution of the class IV HD-zip gene family in streptophytes. Mol Biol Evol. 2013, 30: 2347-2365. 10.1093/molbev/mst132.
CAS
PubMed Central
PubMed
Google Scholar
Harris JC, Hrmova M, Lopato S, Langridge P: Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol. 2011, 190: 823-837. 10.1111/j.1469-8137.2011.03733.x.
CAS
PubMed
Google Scholar
Henriksson E, Olsson AS, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E: Homeodomain leucine zipper class I genes in Arabidopsis: expression patterns and phylogenetic relationships. Plant Physiol. 2005, 139: 509-518. 10.1104/pp.105.063461.
CAS
PubMed Central
PubMed
Google Scholar
Ciarbelli AR, Ciolfi A, Salvucci S, Ruzza V, Possenti M, Carabelli M, Fruscalzo A, Sessa G, Morelli G, Ruberti I: The Arabidopsis homeodomain-leucine zipper II gene family: diversity and redundancy. Plant Mol Biol. 2008, 68: 465-478. 10.1007/s11103-008-9383-8.
CAS
PubMed
Google Scholar
Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X, Estiati A, de Kam RJ, Engstrom P, Slamet-Loedin IH, Zhu Z, Wang M, Xiong L, Meijer AH, Ouwerkerk PB: A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol. 2008, 66: 87-103. 10.1007/s11103-007-9255-7.
CAS
PubMed
Google Scholar
Zhao Y, Zhou Y, Jiang H, Li X, Gan D, Peng X, Zhu S, Cheng B: Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS One. 2011, 6: e28488-10.1371/journal.pone.0028488.
CAS
PubMed Central
PubMed
Google Scholar
Hu R, Chi X, Chai G, Kong Y, He G, Wang X, Shi D, Zhang D, Zhou G: Genome-wide identification, evolutionary expansion, and expression profile of homeodomain-leucine zipper gene family in poplar (Populus trichocarpa). PLoS One. 2012, 7: e31149-10.1371/journal.pone.0031149.
CAS
PubMed Central
PubMed
Google Scholar
Liu W, Fu R, Li Q, Li J, Wang L, Ren Z: Genome-wide identification and expression profile of homeodomain-leucine zipper class I gene family in cucumis sativus. Gene. 2013, 531: 279-287. 10.1016/j.gene.2013.08.089.
CAS
PubMed
Google Scholar
Fu R, Liu W, Li Q, Li J, Wang L, Ren Z: Comprehensive analysis of the homeodomain-leucine zipper IV transcription factor family in Cucumis sativus. Genome. 2013, 56: 395-405. 10.1139/gen-2013-0143.
CAS
PubMed
Google Scholar
Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y: Genome-wide analysis of soybean HD-zip gene family and expression profiling under salinity and drought treatments. PLoS One. 2014, 9: e87156-10.1371/journal.pone.0087156.
PubMed Central
PubMed
Google Scholar
Olsson A, Engstrom P, Soderman E: The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol. 2004, 55: 663-677. 10.1007/s11103-004-1581-4.
CAS
PubMed
Google Scholar
Gago GM, Almoguera C, Jordano J, Gonzalez DH, Chan RL: Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant Cell Environ. 2002, 25: 633-640. 10.1046/j.1365-3040.2002.00853.x.
CAS
Google Scholar
Re DA, Dezar CA, Chan RL, Baldwin IT, Bonaventure G: Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. J Exp Bot. 2011, 62: 155-166. 10.1093/jxb/erq252.
CAS
PubMed Central
PubMed
Google Scholar
Hjellstrom M, Olsson ASB, Engstrom P, Soderman EM: Constitutive expression of the water deficit-inducible homeobox gene ATHB7 in transgenic Arabidopsis causes a suppression of stem elongation growth. Plant Cell Environ. 2003, 26: 1127-1136. 10.1046/j.1365-3040.2003.01037.x.
Google Scholar
Son O, Hur YS, Kim YK, Lee HJ, Kim S, Kim MR, Nam KH, Lee MS, Kim BY, Park J, Lee SC, Hanada A, Yamaguchi S, Lee IJ, Kim SK, Yun DJ, Soderman E, Cheon CI: ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol. 2010, 51: 1537-1547. 10.1093/pcp/pcq108.
CAS
PubMed
Google Scholar
Dezar CA, Gago GM, González DH, Chan RL: Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res. 2005, 14: 429-440. 10.1007/s11248-005-5076-0.
CAS
PubMed
Google Scholar
Manavella PA, Arce AL, Dezar CA, Bitton F, Renou JP, Crespi M, Chan RL: Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J. 2006, 48: 125-137. 10.1111/j.1365-313X.2006.02865.x.
CAS
PubMed
Google Scholar
Deng X, Phillips J, Meijer A, Salamini F, Bartels D: Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol Biol. 2002, 49: 601-610. 10.1023/A:1015501205303.
CAS
PubMed
Google Scholar
Johannesson H, Wang Y, Hanson J, Engstrom P: The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol. 2003, 51: 719-729. 10.1023/A:1022567625228.
CAS
PubMed
Google Scholar
Soderman E, Hjellstrom M, Fahleson J, Engstrom P: The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol Biol. 1999, 40: 1073-1083. 10.1023/A:1006267013170.
CAS
PubMed
Google Scholar
Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E: Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J. 2002, 21: 3029-3038. 10.1093/emboj/cdf316.
CAS
PubMed Central
PubMed
Google Scholar
Leung J, Merlot S, Giraudat J: The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell. 1997, 9: 759-771. 10.1105/tpc.9.5.759.
CAS
PubMed Central
PubMed
Google Scholar
Deng X, Phillips J, Brautigam A, Engstrom P, Johannesson H, Ouwerkerk PF, Ruberti I, Salinas J, Vera P, Iannacone R, Meijer A, Bartels D: A homeodomain leucine zipper gene from craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses. Plant Mol Biol. 2006, 61: 469-489. 10.1007/s11103-006-0023-x.
CAS
PubMed
Google Scholar
Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M: Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell. 2010, 22: 2171-2183. 10.1105/tpc.110.074823.
CAS
PubMed Central
PubMed
Google Scholar
Huang D, Wu W, Abrams SR, Cutler AJ: The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot. 2008, 59: 2991-3007. 10.1093/jxb/ern155.
CAS
PubMed Central
PubMed
Google Scholar
Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C: Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol. 2013, 162: 1378-1391. 10.1104/pp.113.217596.
CAS
PubMed Central
PubMed
Google Scholar
Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu X, Zhang Y, Wang J, Zhang Y, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires JC, Wong GK, Soltis DE, Depamphilis CW: A genome triplication associated with early diversification of the core eudicots. Genome Biol. 2012, 13: R3-10.1186/gb-2012-13-1-r3.
PubMed Central
PubMed
Google Scholar
Proost S, Pattyn P, Gerats T, Van de Peer Y: Journey through the past: 150 million years of plant genome evolution. Plant J. 2011, 66: 58-65. 10.1111/j.1365-313X.2011.04521.x.
CAS
PubMed
Google Scholar
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, DePamphilis CW: Ancestral polyploidy in seed plants and angiosperms. Nature. 2011, 473: 97-100. 10.1038/nature09916.
CAS
PubMed
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, et al: Genome sequence of the palaeopolyploid soybean. Nature. 2010, 463: 178-183. 10.1038/nature08670.
CAS
PubMed
Google Scholar
Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, et al: The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011, 480: 520-524.
CAS
PubMed Central
PubMed
Google Scholar
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, et al: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007, 449: 463-467. 10.1038/nature06148.
CAS
PubMed
Google Scholar
The Arabidopsis Information Resource. [http://www.arabidopsis.org/]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. 10.1016/S0022-2836(05)80360-2.
CAS
PubMed
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
CAS
PubMed Central
PubMed
Google Scholar
Gouy M, Guindon S, Gascuel O: SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010, 27: 221-224. 10.1093/molbev/msp259.
CAS
PubMed
Google Scholar
Galtier N, Gouy M, Gautier C: SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996, 12: 543-548.
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
CAS
PubMed Central
PubMed
Google Scholar
FigTree. [http://tree.bio.ed.ac.uk/software/figtree/]
HMMER. [http://hmmer.janelia.org/]
WebLogo. [http://weblogo.berkeley.edu/logo.cgi]
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
PubMed
Google Scholar
iPlant collaborative. [http://www.iplantcollaborative.org/]
Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006, 55: 539-552. 10.1080/10635150600755453.
PubMed
Google Scholar
Pfam. [http://pfam.sanger.ac.uk/search#tabview=tab1]
Phytozome. [http://www.phytozome.net]
Bio-graphics. [http://search.cpan.org/~lds/Bio-Graphics/]
Cannon EK, Cannon SB: Chromosome visualization tool: a whole genome viewer. Int J Plant Genomics. 2011, 2011: 373875-
PubMed Central
PubMed
Google Scholar
Phytozome v4.0. [ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v4.0/Gmax/misc_feature/Glyma1_domains/glyma1_syn_par.txt]
Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L: Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol. 2010, 10: 282-10.1186/1471-2229-10-282.
CAS
PubMed Central
PubMed
Google Scholar
Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC: RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. 2010, 10: 160-10.1186/1471-2229-10-160.
PubMed Central
PubMed
Google Scholar
Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G: An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010, 63: 86-99.
CAS
PubMed
Google Scholar
Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley RJ, Bilgin DD, Radwan O, Neece DJ, Clough SJ, May GD, Stacey G: Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol. 2010, 152: 541-552. 10.1104/pp.109.148379.
CAS
PubMed Central
PubMed
Google Scholar
Soybase. [http://soybase.org/soyseq/]
soykb. [http://soykb.org/]
Woody JL, Severin AJ, Bolon YT, Joseph B, Diers BW, Farmer AD, Weeks N, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC: Gene expression patterns are correlated with genomic and genic structure in soybean. Genome. 2011, 54: 10-18. 10.1139/G10-090.
CAS
PubMed
Google Scholar
R: A language and environment for statistical computing. [http://www.R-project.org/]
Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010, 26: 873-881. 10.1093/bioinformatics/btq057.
CAS
PubMed Central
PubMed
Google Scholar
Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010, 11: R106-10.1186/gb-2010-11-10-r106.
CAS
PubMed Central
PubMed
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995, 57: 289-300.
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.
CAS
PubMed Central
PubMed
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A: NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Res. 2013, 41: D991-D995. 10.1093/nar/gks1193.
CAS
PubMed Central
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM: Gene ontology: tool for the unification of biology. Nat Genet. 2000, 25: 25-10.1038/75556.
CAS
PubMed Central
PubMed
Google Scholar
Fisher RA: The design of experiments. 1966, Edinburg: London Oliver and Boyd, 8
Google Scholar
Bonferroni CE: Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore del Professore Salvatore Ortu Carboni. 1935, 13-60.
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21: 3674-3676. 10.1093/bioinformatics/bti610.
CAS
PubMed
Google Scholar
Wang Z, Libault M, Joshi T, Valliyodan B, Nguyen H, Xu D, Stacey G, Cheng J: SoyDB: a knowledge database of soybean transcription factors. BMC Plant Biol. 2010, 10: 1-12. 10.1186/1471-2229-10-1.
Google Scholar
SoyDB. [http://www.webcitation.org/6DoD8jYFU]
Frith MC, Fu Y, Yu L, Chen JÄ, Hansen U, Weng Z: Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res. 2004, 32: 1372-1381. 10.1093/nar/gkh299.
CAS
PubMed Central
PubMed
Google Scholar
Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006, 34: D108-D110. 10.1093/nar/gkj143.
CAS
PubMed Central
PubMed
Google Scholar
Prigge MJ, Clark SE: Evolution of the class III HD-Zip gene family in land plants. Evol Dev. 2006, 8: 350-361. 10.1111/j.1525-142X.2006.00107.x.
CAS
PubMed
Google Scholar
Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS: Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol. 2011, 11: 5-10.1186/1471-2229-11-5.
CAS
PubMed Central
PubMed
Google Scholar
Floyd SK, Bowman JL: Gene regulation: Ancient microRNA target sequences in plants. Nature. 2004, 428: 485-486. 10.1038/428485a.
CAS
PubMed
Google Scholar
Google patents. [http://www.google.com/patents/US8653325]
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE: Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell. 2005, 17: 61-76. 10.1105/tpc.104.026161.
CAS
PubMed Central
PubMed
Google Scholar
Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, Takahashi T: Characterization of the class IV homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiol. 2006, 141: 1363-1375. 10.1104/pp.106.077388.
CAS
PubMed Central
PubMed
Google Scholar
Jain M, Tyagi AK, Khurana JP: Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. Febs J. 2008, 275: 2845-2861. 10.1111/j.1742-4658.2008.06424.x.
CAS
PubMed
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Young ND, May G: The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4: 10-10.1186/1471-2229-4-10.
PubMed Central
PubMed
Google Scholar
Kuan J, Saier MH: The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol. 1993, 28: 209-233. 10.3109/10409239309086795.
CAS
PubMed
Google Scholar
Borecky J, Maia IG, Arruda P: Mitochondrial uncoupling proteins in mammals and plants. Biosci Rep. 2001, 21: 201-212. 10.1023/A:1013604526175.
CAS
PubMed
Google Scholar
Parmentier Y, Bouchez D, Fleck J, Genschik P: The 20S proteasome gene family in Arabidopsis thaliana. FEBS Lett. 1997, 416: 281-285. 10.1016/S0014-5793(97)01228-3.
CAS
PubMed
Google Scholar
Vierstra RD: The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 2003, 8: 135-142. 10.1016/S1360-1385(03)00014-1.
CAS
PubMed
Google Scholar
Hughes AL: The evolution of functionally novel proteins after gene duplication. Proc Biol Sci. 1994, 256: 119-124. 10.1098/rspb.1994.0058.
CAS
PubMed
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J: Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999, 151: 1531-1545.
CAS
PubMed Central
PubMed
Google Scholar
Yao L-M, Wang B, Cheng L-J, Wu T-L: Identification of key drought stress-related genes in the hyacinth bean. PLoS One. 2013, 8: e58108-10.1371/journal.pone.0058108.
CAS
PubMed Central
PubMed
Google Scholar
Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F, Wang Q, Rong T, Pan G, Cao M, Tang Q, Gao S, Liu Y, Wang J, Lan H, Lu Y: Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol. 2014, 14: 83-10.1186/1471-2229-14-83.
PubMed Central
PubMed
Google Scholar
Z-h D, Zheng LL, Wang J, Gao Z, Wu SB, Qi Z, Wang YC: Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics. 2013, 14: 29-10.1186/1471-2164-14-29.
Google Scholar
Tang J, Wang F, Wang Z, Huang Z, Xiong A, Hou X: Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (Brassica campestris ssp. chinensis). BMC Plant Biol. 2013, 13: 188-10.1186/1471-2229-13-188.
PubMed Central
PubMed
Google Scholar
Jing L: Role of WRKY Transcription Factors in Arabidopsis Development and Stress Responses. PhD thesis. 2014, University of Helsinki, Faculty of Biological and Environmental Sciences, Department of Biosciences
Google Scholar
Chen L, Song Y, Li S, Zhang L, Zou C, Yu D: The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta (BBA) Gene Regul Mech. 2012, 1819: 120-128. 10.1016/j.bbagrm.2011.09.002.
CAS
Google Scholar
Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi I-R, Omura T, Kikuchi S: Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 2011, 52: 344-360. 10.1093/pcp/pcq196.
CAS
PubMed
Google Scholar
Reddy DS, Mathur PB, Sharma KK: Regulatory role of transcription factors in abiotic stress responses in plants. Climate Change and Plant Abiotic Stress Tolerance. Edited by: Tuteja N, Gill SS. 2013, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 555-588.
Google Scholar
Kizis D, Lumbreras V, Pagès M: Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 2001, 498: 187-189. 10.1016/S0014-5793(01)02460-7.
CAS
PubMed
Google Scholar
Ismail A, Riemann M, Nick P: The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot. 2012, 63: 2127-2139. 10.1093/jxb/err426.
CAS
PubMed Central
PubMed
Google Scholar
Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G: The tify family previously known as ZIM. Trends Plant Sci. 2007, 12: 239-244. 10.1016/j.tplants.2007.04.004.
CAS
PubMed
Google Scholar
Jiang Y, Deyholos M: Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006, 6: 25-10.1186/1471-2229-6-25.
PubMed Central
PubMed
Google Scholar
Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z: Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics. 2011, 98: 47-55.
CAS
PubMed
Google Scholar
Mishra S, Shukla A, Upadhyay S, Sanchita S, Sharma P, Singh S, Phukan UJ, Meena A, Khan F, Tripathi V, Shukla RK, Shrama A: Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana. J Integr Plant Biol. 2014, 56: 388-399. 10.1111/jipb.12149.
CAS
PubMed
Google Scholar
Hiz MC, Canher B, Niron H, Turet M: Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One. 2014, 9: e92598-10.1371/journal.pone.0092598.
PubMed Central
PubMed
Google Scholar
Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K: NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta (BBA) Gene Regul Mech. 2012, 1819: 97-103. 10.1016/j.bbagrm.2011.10.005.
CAS
Google Scholar
Mao X, Chen S, Li A, Zhai C, Jing R: Novel NAC Transcription Factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One. 2014, 9: e84359-10.1371/journal.pone.0084359.
PubMed Central
PubMed
Google Scholar
Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F: The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol. 2014
Google Scholar
Meijer AH, Scarpella E, Van Dijk EL, Qin L, Taal AJC, Rueb S, Harrington SE, McCouch SR, Schilperoort RA, Hoge JHC: Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J. 1997, 11: 263-276. 10.1046/j.1365-313X.1997.11020263.x.
CAS
PubMed
Google Scholar
Lee Y-H, Chun J-Y: A new homeodomain-leucine zipper gene from Arabidopsis thaliana induced by water stress and abscisic acid treatment. Plant Mol Biol. 1998, 37: 377-384. 10.1023/A:1006084305012.
CAS
PubMed
Google Scholar
Scarpella E, Rueb S, Boot KJ, Hoge JH, Meijer AH: A role for the rice homeobox gene Oshox1 in provascular cell fate commitment. Development. 2000, 127: 3655-3669.
CAS
PubMed
Google Scholar
Scarpella E, Boot KJM, Rueb S, Meijer AH: The procambium specification gene Oshox1 promotes polar auxin transport capacity and reduces its sensitivity toward inhibition. Plant Physiol. 2002, 130: 1349-1360. 10.1104/pp.009167.
CAS
PubMed Central
PubMed
Google Scholar
Chen L, Zhou X, Li W, Chang W, Zhou R, Wang C, Sha A, Shan Z, Zhang C, Qiu D, Yang Z, Chen S: Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. BMC Genomics. 2013, 14: 687-10.1186/1471-2164-14-687.
CAS
PubMed Central
PubMed
Google Scholar
Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G: The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J. 1996, 10: 393-402. 10.1046/j.1365-313X.1996.10030393.x.
CAS
PubMed
Google Scholar
Wang Y, Zhang W, Li K, Sun F, Han C, Li X: Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. J Plant Res. 2008, 121: 87-96. 10.1007/s10265-007-0123-y.
PubMed
Google Scholar
Wang Y, Li X: Salt stress-induced cell reprogramming, cell fate switch and adaptive plasticity during root hair development in Arabidopsis. Plant Signal Behav. 2008, 3: 436-438. 10.4161/psb.3.7.5759.
CAS
PubMed Central
PubMed
Google Scholar
The Lens. [http://www.lens.org/lens/biological_search]
Jefferson OA, Kollhofer D, Ehrich TH, Jefferson RA: Transparency tools in gene patenting for informing policy and practice. Nat Biotech. 2013, 31: 1086-1093. 10.1038/nbt.2755.
CAS
Google Scholar
Palena CM, Gonzalez DH, Chan RL: A monomer-dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochem J. 1999, 341: 81-87. 10.1042/0264-6021:3410081.
CAS
PubMed Central
PubMed
Google Scholar
Palena CM, Tron AE, Bertoncini CW, Gonzalez DH, Chan RL: Positively charged residues at the N-terminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins. J Mol Biol. 2001, 308: 39-47. 10.1006/jmbi.2001.4563.
CAS
PubMed
Google Scholar
Johannesson H, Wang Y, Engstrom P: DNA-binding and dimerization preferences of Arabidopsis homeodomain-leucine zipper transcription factors in vitro. Plant Mol Biol. 2001, 45: 63-73. 10.1023/A:1006423324025.
CAS
PubMed
Google Scholar
Arce AL, Raineri J, Capella M, Cabello JV, Chan RL: Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC Plant Biol. 2011, 11: 42-10.1186/1471-2229-11-42.
CAS
PubMed Central
PubMed
Google Scholar
Zhang B, Chen W, Foley RC, Buttner M, Singh KB: Interactions between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell Online. 1995, 7: 2241-2252. 10.1105/tpc.7.12.2241.
CAS
Google Scholar
Chen W, Chao G, Singh KB: The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant J. 1996, 10: 955-966. 10.1046/j.1365-313X.1996.10060955.x.
CAS
PubMed
Google Scholar
Kang H-G, Foley RC, Oñate-Sánchez L, Lin C, Singh KB: Target genes for OBP3, a Dof transcription factor, include novel basic helix-loop-helix domain proteins inducible by salicylic acid. Plant J. 2003, 35: 362-372. 10.1046/j.1365-313X.2003.01812.x.
CAS
PubMed
Google Scholar
Park DH, Lim PO, Kim JS, Cho DS, Hong SH, Nam HG: The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. Plant J. 2003, 34: 161-171. 10.1046/j.1365-313X.2003.01710.x.
CAS
PubMed
Google Scholar
Yanagisawa S, Sheen J: Involvement of Maize Dof Zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell Online. 1998, 10: 75-89. 10.1105/tpc.10.1.75.
CAS
Google Scholar
Papi M, Sabatini S, Altamura MM, Hennig L, Schafer E, Costantino P, Vittorioso P: Inactivation of the phloem-specific Dof Zinc finger GeneDAG1 affects response to light and integrity of the testa of Arabidopsis seeds. Plant Physiol. 2002, 128: 411-417. 10.1104/pp.010488.
CAS
PubMed Central
PubMed
Google Scholar
De Paolis A, Sabatini S, De Pascalis L, Costantino P, Capone I: A rolB regulatory factor belongs to a new class of single zinc finger plant proteins. Plant J. 1996, 10: 215-223. 10.1046/j.1365-313X.1996.10020215.x.
CAS
PubMed
Google Scholar
Kisu Y, Ono T, Shimofurutani N, Suzuki M, Esaka M: Characterization and expression of a new class of zinc finger protein that binds to silencer region of ascorbate oxidase gene. Plant Cell Physiol. 1998, 39: 1054-1064. 10.1093/oxfordjournals.pcp.a029302.
CAS
PubMed
Google Scholar
Washio K: Identification of Dof proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains. Biochim Biophys Acta (BBA) Gene Struct Exp. 2001, 1520: 54-62. 10.1016/S0167-4781(01)00251-2.
CAS
Google Scholar
Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P: A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol. 2002, 130: 111-119. 10.1104/pp.005561.
CAS
PubMed Central
PubMed
Google Scholar
Papi M, Sabatini S, Bouchez D, Camilleri C, Costantino P, Vittorioso P: Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes Dev. 2000, 14: 28-33.
CAS
PubMed Central
PubMed
Google Scholar
Gualberti G, Papi M, Bellucci L, Ricci I, Bouchez D, Camilleri C, Costantino P, Vittorioso P: Mutations in the Dof Zinc finger Genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell Online. 2002, 14: 1253-1263. 10.1105/tpc.010491.
CAS
Google Scholar
Desveaux D, Marechal A, Brisson N: Whirly transcription factors: defense gene regulation and beyond. Trends Plant Sci. 2005, 10: 95-102.
CAS
PubMed
Google Scholar
Winicov I, Bastola DR: Transgenic overexpression of the transcription FactorAlfin1 enhances expression of the endogenous MsPRP2Gene in Alfalfa and improves salinity tolerance of the plants. Plant Physiol. 1999, 120: 473-480. 10.1104/pp.120.2.473.
CAS
PubMed Central
PubMed
Google Scholar
Winicov I: Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta. 2000, 210: 416-422. 10.1007/PL00008150.
CAS
PubMed
Google Scholar
UniProtKB. [http://www.uniprot.org/uniprot/]