Hoban DJ, Doern GV, Fluit AC, Roussel-Delvallez M, Jones RN: Worldwide prevalence of antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis. 2001, 32 (Suppl 2): S81-S93.
Article
CAS
PubMed
Google Scholar
Lijek RS, Weiser JN: Co-infection subverts mucosal immunity in the upper respiratory tract. Curr Opin Immunol. 2012, 24: 417-423. 10.1016/j.coi.2012.05.005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Duffield M, Cooper I, McAlister E, Bayliss M, Ford D, Oyston P: Predicting conserved essential genes in bacteria: in silico identification of putative drug targets. Mol Biosyst. 2010, 6: 2482-2489. 10.1039/c0mb00001a.
Article
CAS
PubMed
Google Scholar
Sakharkar KR, Sakharkar MK, Chow VT: A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol. 2004, 4: 355-360.
CAS
PubMed
Google Scholar
Lewis K: Multidrug resistance: Versatile drug sensors of bacterial cells. Curr Biol. 1999, 9: R403-R407. 10.1016/S0960-9822(99)80254-1.
Article
CAS
PubMed
Google Scholar
Clayton RA, White O, Ketchum KA, Venter JC: The first genome from the third domain of life. Nature. 1997, 387: 459-462. 10.1038/387459a0.
Article
CAS
PubMed
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P: A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010, 464: 59-65. 10.1038/nature08821.
Article
CAS
PubMed Central
PubMed
Google Scholar
Buffie CG, Pamer EG: Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013, 13: 790-801. 10.1038/nri3535.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ahram M, Springer DL: Large-scale proteomic analysis of membrane proteins. Expert Review of Proteomics. 2004, 1: 293-302. 10.1586/14789450.1.3.293.
Article
CAS
PubMed
Google Scholar
Yu NY, Laird MR, Spencer C, Brinkman FS: PSORTdb–an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea. Nucleic Acids Res. 2011, 39: D241-D244. 10.1093/nar/gkq1093.
Article
CAS
PubMed Central
PubMed
Google Scholar
Molzen TE, Burghout P, Bootsma HJ, Brandt CT, van der Gaast-de Jongh CE, Eleveld MJ, Verbeek MM, Frimodt-Moller N, Ostergaard C, Hermans PW: Genome-wide identification of Streptococcus pneumoniae genes essential for bacterial replication during experimental meningitis. Infect Immun. 2011, 79: 288-297. 10.1128/IAI.00631-10.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sassetti CM, Boyd DH, Rubin EJ: Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A. 2001, 98: 12712-12717. 10.1073/pnas.231275498.
Article
CAS
PubMed Central
PubMed
Google Scholar
van Opijnen T, Camilli A: Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol. 2013, 11: 435-442. 10.1038/nrmicro3033.
Article
CAS
PubMed
Google Scholar
Barquist L, Boinett CJ, Cain AK: Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol. 2013, 10: 1161-1169. 10.4161/rna.24765.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chung BK-S, Dick T, Lee D-Y: In silico analyses for the discovery of tuberculosis drug targets. J Antimicrob Chemother. 2013, 68: 2701-2709. 10.1093/jac/dkt273.
Article
CAS
PubMed
Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008, 9: 75-10.1186/1471-2164-9-75.
Article
PubMed Central
PubMed
Google Scholar
Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13: 2178-2189. 10.1101/gr.1224503.
Article
CAS
PubMed Central
PubMed
Google Scholar
de Vries SP, Burghout P, Langereis JD, Zomer A, Hermans PW, Bootsma HJ: Genetic requirements for Moraxella catarrhalis growth under iron-limiting conditions. Mol Microbiol. 2013, 87: 14-29. 10.1111/mmi.12081.
Article
CAS
PubMed
Google Scholar
de Vries SP, Eleveld MJ, Hermans PW, Bootsma HJ: Characterization of the molecular interplay between Moraxella catarrhalis and human respiratory tract epithelial cells. PLoS One. 2013, 8: e72193-10.1371/journal.pone.0072193.
Article
CAS
PubMed Central
PubMed
Google Scholar
Burghout P, Cron LE, Gradstedt H, Quintero B, Simonetti E, Bijlsma JJE, Bootsma HJ, Hermans PWM: Carbonic Anhydrase Is Essential for Streptococcus pneumoniae Growth in Environmental Ambient Air. J Bacteriol. 2010, 192: 4054-4062. 10.1128/JB.00151-10.
Article
CAS
PubMed Central
PubMed
Google Scholar
Langereis JD, Zomer A, Stunnenberg HG, Burghout P, Hermans PWM: Nontypeable Haemophilus influenzae Carbonic Anhydrase Is Important for Environmental and Intracellular Survival. J Bacteriol. 2013, 195: 2737-2746. 10.1128/JB.01870-12.
Article
CAS
PubMed Central
PubMed
Google Scholar
Burghout P, Zomer A, van der Gaast-de Jongh CE, Janssen-Megens EM, Françoijs K-J, Stunnenberg HG, Hermans PWM: Streptococcus pneumoniae Folate Biosynthesis Responds to Environmental CO2 Levels. J Bacteriol. 2013, 195: 1573-1582. 10.1128/JB.01942-12.
Article
CAS
PubMed Central
PubMed
Google Scholar
van Opijnen T, Bodi KL, Camilli A: Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods. 2009, 6: 767-772. 10.1038/nmeth.1377.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zomer A, Burghout P, Bootsma HJ, Hermans PW, van Hijum SA: ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PLoS One. 2012, 7: e43012-10.1371/journal.pone.0043012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40: D109-D114. 10.1093/nar/gkr988.
Article
CAS
PubMed Central
PubMed
Google Scholar
Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005, 33: 5691-5702. 10.1093/nar/gki866.
Article
CAS
PubMed Central
PubMed
Google Scholar
Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003, 100: 9440-9445. 10.1073/pnas.1530509100.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yu CS, Chen YC, Lu CH, Hwang JK: Prediction of protein subcellular localization. Proteins. 2006, 64: 643-651. 10.1002/prot.21018.
Article
CAS
PubMed
Google Scholar
Zhou M, Boekhorst J, Francke C, Siezen RJ: LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics. 2008, 9: 173-10.1186/1471-2105-9-173.
Article
PubMed Central
PubMed
Google Scholar
Shen HB, Chou KC: Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. J Theor Biol. 2010, 264: 326-333. 10.1016/j.jtbi.2010.01.018.
Article
CAS
PubMed
Google Scholar
Berven FS, Flikka K, Jensen HB, Eidhammer I: BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res. 2004, 32: W394-W399. 10.1093/nar/gkh351.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bauer AW, Perry DM, Kirby WM: Single-disk antibiotic-sensitivity testing of staphylococci: An analysis of technique and results. AMA Archives of Internal Medicine. 1959, 104: 208-216. 10.1001/archinte.1959.00270080034004.
Article
CAS
PubMed
Google Scholar
Wiegand I, Hilpert K, Hancock RE: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008, 3: 163-175. 10.1038/nprot.2007.521.
Article
CAS
PubMed
Google Scholar
Grubbs FE: Procedures for Detecting Outlying Observations in Samples. Technometrics. 1969, 11: 1-21. 10.1080/00401706.1969.10490657.
Article
Google Scholar
Gawronski JD, Wong SM, Giannoukos G, Ward DV, Akerley BJ: Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A. 2009, 106: 16422-16427. 10.1073/pnas.0906627106.
Article
CAS
PubMed Central
PubMed
Google Scholar
Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B, Coller JA, Fero MJ, McAdams HH, Shapiro L: The essential genome of a bacterium. Mol Syst Biol. 2011, 7: 528-
Article
PubMed Central
PubMed
Google Scholar
Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ: A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci U S A. 2002, 99: 966-971. 10.1073/pnas.012602299.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ochsner UA, Sun X, Jarvis T, Critchley I, Janjic N: Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents. Expert Opin Investig Drugs. 2007, 16: 573-593. 10.1517/13543784.16.5.573.
Article
CAS
PubMed
Google Scholar
Campbell JW, Cronan JE: Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol. 2001, 55: 305-332. 10.1146/annurev.micro.55.1.305.
Article
CAS
PubMed
Google Scholar
Payne DJ, Warren PV, Holmes DJ, Ji Y, Lonsdale JT: Bacterial fatty-acid biosynthesis: a genomics-driven target for antibacterial drug discovery. Drug Discov Today. 2001, 6: 537-544. 10.1016/S1359-6446(01)01774-3.
Article
CAS
PubMed
Google Scholar
Manallack DT, Crosby IT, Khakham Y, Capuano B: Platensimycin: a promising antimicrobial targeting fatty acid synthesis. Curr Med Chem. 2008, 15: 705-710. 10.2174/092986708783885255.
Article
CAS
PubMed
Google Scholar
Du Q, Wang H, Xie J: Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets?. Int J Biol Sci. 2011, 7: 41-52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, Kurosu M: Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem. 2012, 55: 3739-3755. 10.1021/jm201608g.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kronenberger T, Schettert I, Wrenger C: Targeting the vitamin biosynthesis pathways for the treatment of malaria. Future Med Chem. 2013, 5: 769-779. 10.4155/fmc.13.43.
Article
CAS
PubMed
Google Scholar
Bermingham A, Derrick JP: The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays. 2002, 24: 637-648. 10.1002/bies.10114.
Article
CAS
PubMed
Google Scholar
Dhar MK, Koul A, Kaul S: Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. N Biotechnol. 2013, 30: 114-123. 10.1016/j.nbt.2012.07.001.
Article
CAS
PubMed
Google Scholar
Lange BM, Rujan T, Martin W, Croteau R: Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A. 2000, 97: 13172-13177. 10.1073/pnas.240454797.
Article
CAS
PubMed Central
PubMed
Google Scholar
Odom AR: Five questions about non-mevalonate isoprenoid biosynthesis. PLoS Pathog. 2011, 7: e1002323-10.1371/journal.ppat.1002323.
Article
CAS
PubMed Central
PubMed
Google Scholar
Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS: DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011, 39: D1035-D1041. 10.1093/nar/gkq1126.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kimmig J: Gerhard Domagk, 1895-1964. Contribution to the chemotherapy of bacterial infections. Internist (Berl). 1969, 10: 116-120.
CAS
Google Scholar
Pollak N, Dolle C, Ziegler M: The power to reduce: pyridine nucleotides–small molecules with a multitude of functions. Biochem J. 2007, 402: 205-218. 10.1042/BJ20061638.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sauve AA: NAD + and Vitamin B3: From Metabolism to Therapies. J Pharmacol Exp Ther. 2008, 324: 883-893.
Article
CAS
PubMed
Google Scholar
Khedkar SA, Malde AK, Coutinho EC: Comparative protein modeling of methionine S-adenosyltransferase (MAT) enzyme from Mycobacterium tuberculosis: a potential target for antituberculosis drug discovery. J Mol Graph Model. 2005, 23: 355-366. 10.1016/j.jmgm.2004.11.003.
Article
CAS
PubMed
Google Scholar
Perez-Leal O, Moncada C, Clarkson AB, Merali S: Pneumocystis S-adenosylmethionine transport: a potential drug target. Am J Respir Cell Mol Biol. 2011, 45: 1142-1146. 10.1165/rcmb.2011-0009OC.
Article
CAS
PubMed Central
PubMed
Google Scholar
Peleg AY, Hooper DC: Hospital-acquired infections due to Gram-negative bacteria. N Engl J Med. 2010, 362: 1804-1813. 10.1056/NEJMra0904124.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chopra I, Schofield C, Everett M, O’Neill A, Miller K, Wilcox M, Frere JM, Dawson M, Czaplewski L, Urleb U, Courvalin P: Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement. Lancet Infect Dis. 2008, 8: 133-139. 10.1016/S1473-3099(08)70018-5.
Article
PubMed
Google Scholar
Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, Painter R, Parthasarathy G, Tang YS, Cummings R, Ha S, Dorso K, Motyl M, Jayasuriya H, Ondeyka J, Herath K, Zhang C, Hernandez L, Allocco J, Basilio A, Tormo JR, Genilloud O, Vicente F, Pelaez F, Colwell L, Lee SH, Michael B, Felcetto T, Gill C, Silver LL: Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature. 2006, 441: 358-361. 10.1038/nature04784.
Article
CAS
PubMed
Google Scholar
Brinster S, Lamberet G, Staels B, Trieu-Cuot P, Gruss A, Poyart C: Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature. 2009, 458: 83-86. 10.1038/nature07772.
Article
CAS
PubMed
Google Scholar
Parsons JB, Broussard TC, Bose JL, Rosch JW, Jackson P, Subramanian C, Rock CO: Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus. Proc Natl Acad Sci. 2014, 111: 10532-10537. 10.1073/pnas.1408797111.
Article
CAS
PubMed Central
PubMed
Google Scholar
Heath RJ, Rock CO: Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Investig Drugs. 2004, 5: 146-153.
CAS
PubMed Central
PubMed
Google Scholar
Spalding MD, Prigge ST: Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev. 2010, 74: 200-228. 10.1128/MMBR.00008-10.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cuthbert JA, Lipsky PE: Inhibition by 6-fluoromevalonate demonstrates that mevalonate or one of the mevalonate phosphates is necessary for lymphocyte proliferation. J Biol Chem. 1990, 265: 18568-18575.
CAS
PubMed
Google Scholar
Wilding EI, Brown JR, Bryant AP, Chalker AF, Holmes DJ, Ingraham KA, Iordanescu S, So CY, Rosenberg M, Gwynn MN: Identification, Evolution, and Essentiality of the Mevalonate Pathway for Isopentenyl Diphosphate Biosynthesis in Gram-Positive Cocci. J Bacteriol. 2000, 182: 4319-4327. 10.1128/JB.182.15.4319-4327.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar