Mittler R: Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11: 15-19. 10.1016/j.tplants.2005.11.002.
Article
CAS
PubMed
Google Scholar
Rushton PJ, Somssich IE, Ringler P, Shen J: QX: WRKY transcription factors. Trends in Plant Sciences. 2010, 15: 247-258. 10.1016/j.tplants.2010.02.006.
Article
CAS
Google Scholar
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin B, Lepiniec L: MYB transcription factors in Arabidopsis. Trends in Plant Sciences. 2010, 15: 573-581. 10.1016/j.tplants.2010.06.005.
Article
CAS
Google Scholar
Mizoia J, Shinozakib K, Yamaguchi-Shinozakia K: AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2012, 1819: 86-96. 10.1016/j.bbagrm.2011.08.004.
Article
Google Scholar
Puranik S, Sahu PP, Srivastava PS, Prasad M: NAC proteins: regulation and role in stress tolerance. Trends in Plant Sciences. 2012, 17: 369-381. 10.1016/j.tplants.2012.02.004.
Article
CAS
Google Scholar
Xu F, Park MR, Kitazumi A, Herath V, Mohanty B, Yun SJ, Reyes De Los BG: Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints. BMC Genomics. 2012, 13: 497-505. 10.1186/1471-2164-13-497.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wu C: Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995, 11: 441-469. 10.1146/annurev.cb.11.110195.002301.
Article
CAS
PubMed
Google Scholar
Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A: Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem. 2009, 47: 785-795. 10.1016/j.plaphy.2009.05.003.
Article
CAS
PubMed
Google Scholar
Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002, 130: 2129-2141. 10.1104/pp.008532.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shinozaki K, Yamaguchi-Shinozaki K: Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007, 58: 221-227.
Article
CAS
PubMed
Google Scholar
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J: Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics. 2008, 35: 105-118. 10.1016/S1673-8527(08)60016-8.
Article
CAS
PubMed
Google Scholar
Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD: Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?. Cell Stress Chaperon. 2001, 6: 177-189. 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2.
Article
CAS
Google Scholar
Ritossa F: A new puffing pattern induced by temperature shock and DNP in Drosophila. Experimentia. 1962, 18: 571-573. 10.1007/BF02172188.
Article
CAS
Google Scholar
Scharf KD, Berberich T, Ebersberger I, Nover L: The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim Biophys Acta. 1819, 2012: 104-119.
Google Scholar
Blanc G, Wolfe KH: Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell. 2004, 16: 1679-1691. 10.1105/tpc.021410.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Young ND, May G: The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4: 53-62.
Article
Google Scholar
Maere S, De Bodt S, Raes J, Casneuf T, Montagu MV, Kuiper M, Van de Peer Y: Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci. 2005, 102: 5454-5459. 10.1073/pnas.0501102102.
Article
CAS
PubMed Central
PubMed
Google Scholar
Von Koskull-Döring P, Scharf KD, Nover L: The diversity of plant heat stress transcription factors. Trends Plant Sci. 2007, 12: 452-457. 10.1016/j.tplants.2007.08.014.
Article
PubMed
Google Scholar
Harrison CJ, Bohm AA, Nelson HC: Crystal structure of the DNA binding domain of the heat shock transcription factor. Science. 1994, 263: 224-227. 10.1126/science.8284672.
Article
CAS
PubMed
Google Scholar
Peteranderl R, Rabenstein M, Shin YK, Liu CW, Wemmer DE, King DS, Nelson HC: Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochemistry. 1999, 38: 3559-3569. 10.1021/bi981774j.
Article
CAS
PubMed
Google Scholar
Kotak S, Port M, Ganguli A, Bicker F, Döring P: Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J. 2004, 39: 98-112. 10.1111/j.1365-313X.2004.02111.x.
Article
CAS
PubMed
Google Scholar
Morimoto RI: Dynamic Remodeling of Transcription Complexes by Molecular Chaperones. Cell. 2002, 110: 281-284. 10.1016/S0092-8674(02)00860-7.
Article
CAS
PubMed
Google Scholar
Hartl FU, Hayer-Hartl M: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002, 295: 1852-1858. 10.1126/science.1068408.
Article
CAS
PubMed
Google Scholar
Bienz M, Pelham HR: Mechanisms of heat-shock gene activation in higher eukaryotes. Adv Genet. 1987, 24: 31-72.
Article
CAS
PubMed
Google Scholar
Krishna P, Gloor G: The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperon. 2001, 6: 238-246. 10.1379/1466-1268(2001)006<0238:THFOPI>2.0.CO;2.
Article
CAS
Google Scholar
Pratt WB, Toft DO: Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med. 2003, 228: 111-133.
CAS
Google Scholar
Sato Y, Yokoya S: Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep. 2008, 27: 329-334. 10.1007/s00299-007-0470-0.
Article
CAS
PubMed
Google Scholar
Cokol M, Nair R, Rost B: Finding nuclear localization signals. EMBO Rep. 2000, 1: 411-415. 10.1093/embo-reports/kvd092.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S: Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel. 2004, 17: 527-536. 10.1093/protein/gzh062.
Article
PubMed
Google Scholar
Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L: The Role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell. 2000, 12: 265-278. 10.1105/tpc.12.2.265.
Article
PubMed Central
PubMed
Google Scholar
Åkerfelt M, Morimoto RI, Sistonen L: Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010, 11: 545-555. 10.1038/nrm2938.
Article
PubMed Central
PubMed
Google Scholar
Aranda MA, Escaler M, Thomas CL, Maule AJ: A heat shock transcription factor in pea is differentially controlled by heat and virus replication. Plant J. 1999, 20: 153-161. 10.1046/j.1365-313x.1999.00586.x.
Article
CAS
PubMed
Google Scholar
Miller G, Mittler R: Could heat shock transcription factors function as hydrogen peroxide sensors in plants?. Ann Bot. 2006, 98: 279-288. 10.1093/aob/mcl107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sung DY, Kaplan F, Lee KJ, Guy CL: Acquired tolerance to temperature extremes. Trends Plant Sci. 2003, 8: 179-187. 10.1016/S1360-1385(03)00047-5.
Article
CAS
PubMed
Google Scholar
Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PA, Richard F, Persad R, Bowden L, Hickman R, Martin C, Beynon JL, Buchanan-Wollaston V, Baker NR, Morison JI, Schöffl F, Ott S, Mullineaux PM: Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot. 2013, 64: 3467-3481. 10.1093/jxb/ert185.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ogawa D, Yamaguchi K, Nishiuchi T: High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot. 2007, 58: 3373-3383. 10.1093/jxb/erm184.
Article
CAS
PubMed
Google Scholar
Liu YF, Zhang CX, Chen J, Guo LH, Li XL, Li WP, Yu ZF, Deng JS, Zhang PY, Zhang KQ, Zhang LM: Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol Biochem. 2013, 64: 92-98.
Article
CAS
PubMed
Google Scholar
Pernas M, Ryan E, Dolan L: SCHIZORIZA controls tissue system complexity in plants. Curr Biol. 2010, 20: 818-823. 10.1016/j.cub.2010.02.062.
Article
CAS
PubMed
Google Scholar
Pajerowska-Mukhtar KM, Wang W, Tada Y, Oka N, Tucker CL, Fonseca JP, Dong XN: The Hsf-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr Biol. 2012, 22: 103-112. 10.1016/j.cub.2011.12.015.
Article
CAS
PubMed Central
PubMed
Google Scholar
Long SP, Ort DR: More than taking the heat: crops and global change. Curr Opin Plant Biol. 2010, 13: 241-248.
Article
PubMed
Google Scholar
Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, et al: Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012, 492: 423-427. 10.1038/nature11798.
Article
CAS
PubMed
Google Scholar
Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S: The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012, 44: 1098-1103. 10.1038/ng.2371.
Article
CAS
PubMed
Google Scholar
Cronn R, Cedroni M, Haselkorn T, Grover C, Wendel JF: PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Genet. 2002, 104: 482-489. 10.1007/s001220100741.
Article
CAS
PubMed
Google Scholar
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, et al: Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014, 46: 567-574. 10.1038/ng.2987.
Article
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 24: 4876-4882.
Article
Google Scholar
Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A: The Pfam protein families database. Nucleic Acids Res. 2010, 36: 281-288.
Article
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Bailey TL, Elkan C: The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol. 1995, 3: 21-29.
CAS
PubMed
Google Scholar
Delorenzi M, Speed T: An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics. 2002, 18: 617-625. 10.1093/bioinformatics/18.4.617.
Article
CAS
PubMed
Google Scholar
Letunic I, Doerks T, Bork P: SMART 6: recent updates and new developments. Nucleic Acids Res. 2009, 37: 229-232.
Article
Google Scholar
Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ: Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics. 2011, 12: 76-85. 10.1186/1471-2164-12-76.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huang YQ, Wang J, Zhang LD, Zuo KJ: A cotton annexin protein AnxGb6 regulates fiber elongation through its interaction with actin 1. PLoS One. 2013, 8: doi:10.1371/journal.pone.0066160
Google Scholar
Lyck R, Harmening U, Höhfeld I, Treuter E, Scharf KD, Nover L: Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta. 1997, 202: 117-125. 10.1007/s004250050110.
Article
CAS
PubMed
Google Scholar
Heerklotz D, Döring P, Bonzelius F, Winkelhaus S, Nover L: The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol. 2001, 21: 1759-1768. 10.1128/MCB.21.5.1759-1768.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wei KF, Chen J, Chen YF, Wu LJ, Xie DX: Multiple strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses. Mol BioSyst. 2012, 8: 1940-1949. 10.1039/c2mb05483c.
Article
CAS
PubMed
Google Scholar
Scharf KD, Heider H, Hohfeld I, Lyck R, Schmidt E, Nover L: The Tomato Hsf System: HsfA2 needs interaction with hsfa1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol. 1997, 18: 2240-2251.
Article
Google Scholar
Scharf KD, Rose S, Zott W, Schoffl F, Nover L: Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast Hsf. EMBO J. 1990, 9: 4495-4501.
CAS
PubMed Central
PubMed
Google Scholar
Li HB, Qin YM, Pang Y, Song WQ, Mei WQ, Zhu YX: A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New Phytologist. 2007, 175: 462-471. 10.1111/j.1469-8137.2007.02120.x.
Article
CAS
PubMed
Google Scholar
Wendel JF: Genetics and Genomics of Cotton. Plant genetics and genomics Volume 3. Edited by: Paterson AH, Paterson AH. New York: Springer Science Business Media, LLC 200, ISBN 978-0-387-70809-6
Flagel LE, Wende JF, Udall JA: Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics. 2012, 13: 302-314. 10.1186/1471-2164-13-302.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Carranco R, Hiratsu K, Ohme-Takagi M, Jordano J: Loss of function of the HsfA9 seed longevity program. Plant Cell Environ. 2010, 33: 1408-1417.
CAS
PubMed
Google Scholar
Carranco R, Espinosa JM, Prieto-Dapena P, Almoguera C, Jordano J: Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity. Proc Natl Acad Sci U S A. 2010, 107: 21908-21913. 10.1073/pnas.1014856107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Singh RP, Prasad PV, Sunita K, Giri SN, Reddy KR: Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron. 2007, 93: 313-385.
Article
CAS
Google Scholar
Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A: The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 1999, 119: 849-858. 10.1104/pp.119.3.849.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hu GJ, Koh J, Yoo MJ, Grupp K, Chen SX, Wendel JF: Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytologist. 2013, 200: 570-582. 10.1111/nph.12381.
Article
CAS
PubMed
Google Scholar
Fry SC: Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochemical Journal. 1998, 332: 507-515.
Article
CAS
PubMed Central
PubMed
Google Scholar
Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003, 422: 442-446. 10.1038/nature01485.
Article
CAS
PubMed
Google Scholar