Web site of the Charles Vinson laboratory. [http://home.ccr.cancer.gov/metabolism/vinson/vinsonccr.htm]
Smale ST, Kadonaga JT: The RNA polymerase II core promoter. Annu Rev Biochem. 2003, 72: 449-479. 10.1146/annurev.biochem.72.121801.161520.
Article
PubMed
Google Scholar
Maston GA, Evans SK, Green MR: Transcriptional Regulatory Elements in the Human Genome. Annu Rev Genomics Hum Genet. 2006
Google Scholar
Heintzman ND, Ren B: The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome. Cell Mol Life Sci. 2007, 64 (4): 386-400. 10.1007/s00018-006-6295-0.
Article
PubMed
Google Scholar
Swartz MN, Trautner TA, Kornberg A: Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem. 1962, 237: 1961-1967.
PubMed
Google Scholar
Bird A, Taggart M, Frommer M, Miller OJ, Macleod D: A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985, 40 (1): 91-99. 10.1016/0092-8674(85)90312-5.
Article
PubMed
Google Scholar
Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16 (1): 6-21. 10.1101/gad.947102.
Article
PubMed
Google Scholar
Gardiner-Garden M, Frommer M: CpG islands in vertebrate genomes. J Mol Biol. 1987, 196 (2): 261-282. 10.1016/0022-2836(87)90689-9.
Article
PubMed
Google Scholar
Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B: A high-resolution map of active promoters in the human genome. Nature. 2005, 436 (7052): 876-880. 10.1038/nature03877.
Article
PubMed
PubMed Central
Google Scholar
Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, et al: Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 2006, 38 (6): 626-635. 10.1038/ng1789.
Article
PubMed
Google Scholar
Sabo PJ, Humbert R, Hawrylycz M, Wallace JC, Dorschner MO, McArthur M, Stamatoyannopoulos JA: Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc Natl Acad Sci USA. 2004, 101 (13): 4537-4542. 10.1073/pnas.0400678101.
Article
PubMed
PubMed Central
Google Scholar
Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, Margulies EH, Chen Y, Bernat JA, Ginsburg D, et al: Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 2006, 16 (1): 123-131. 10.1101/gr.4074106.
Article
PubMed
PubMed Central
Google Scholar
Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, et al: Genome-wide location and function of DNA binding proteins. Science. 2000, 290 (5500): 2306-2309. 10.1126/science.290.5500.2306.
Article
PubMed
Google Scholar
Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129 (4): 823-837. 10.1016/j.cell.2007.05.009.
Article
PubMed
Google Scholar
FitzGerald PC, Shlyakhtenko A, Mir AA, Vinson C: Clustering of DNA sequences in human promoters. Genome Res. 2004, 14 (8): 1562-1574. 10.1101/gr.1953904.
Article
PubMed
PubMed Central
Google Scholar
Bina M, Wyss P, Ren W, Szpankowski W, Thomas E, Randhawa R, Reddy S, John PM, Pares-Matos EI, Stein A, et al: Exploring the characteristics of sequence elements in proximal promoters of human genes. Genomics. 2004, 84 (6): 929-940. 10.1016/j.ygeno.2004.08.013.
Article
PubMed
Google Scholar
Marino-Ramirez L, Spouge JL, Kanga GC, Landsman D: Statistical analysis of over-represented words in human promoter sequences. Nucleic Acids Res. 2004, 32 (3): 949-958. 10.1093/nar/gkh246.
Article
PubMed
PubMed Central
Google Scholar
Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M: Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature. 2005, 434 (7031): 338-345. 10.1038/nature03441.
Article
PubMed
PubMed Central
Google Scholar
Weinmann AS, Farnham PJ: Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods. 2002, 26 (1): 37-47. 10.1016/S1046-2023(02)00006-3.
Article
PubMed
Google Scholar
Ptashne M, Gann A: Transcriptional activation by recruitment. Nature. 1997, 386 (6625): 569-577. 10.1038/386569a0.
Article
PubMed
Google Scholar
Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O'Neill LP, Turner BM, Delrow J, et al: The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 2004, 18 (11): 1263-1271. 10.1101/gad.1198204.
Article
PubMed
PubMed Central
Google Scholar
Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA: A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007, 130 (1): 77-88. 10.1016/j.cell.2007.05.042.
Article
PubMed
PubMed Central
Google Scholar
Fitzgerald PC, Sturgill D, Shyakhtenko A, Oliver B, Vinson C: Comparative genomics of Drosophila and human core promoters. Genome Biol. 2006, 7 (7): R53-10.1186/gb-2006-7-7-r53.
Article
PubMed
PubMed Central
Google Scholar
Noma K, Allis CD, Grewal SI: Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science. 2001, 293 (5532): 1150-1155. 10.1126/science.1064150.
Article
PubMed
Google Scholar
Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G: Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science. 2001, 293 (5539): 2453-2455. 10.1126/science.1064413.
Article
PubMed
Google Scholar
GNF Genome Informatics Applications & Datasets. [http://wombat.gnf.org]
Bajic VB, Tan SL, Christoffels A, Schonbach C, Lipovich L, Yang L, Hofmann O, Kruger A, Hide W, Kai C, et al: Mice and men: their promoter properties. PLoS Genet. 2006, 2 (4): e54-10.1371/journal.pgen.0020054.
Article
PubMed
PubMed Central
Google Scholar
Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002, 35 (4): 605-623. 10.1016/S0896-6273(02)00828-0.
Article
PubMed
Google Scholar
Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004, 119 (7): 1041-1054.
PubMed
Google Scholar
Jones PA, Baylin SB: The epigenomics of cancer. Cell. 2007, 128 (4): 683-692. 10.1016/j.cell.2007.01.029.
Article
PubMed
PubMed Central
Google Scholar
Bird AP, Wolffe AP: Methylation-induced repression – belts, braces, and chromatin. Cell. 1999, 99 (5): 451-454. 10.1016/S0092-8674(00)81532-9.
Article
PubMed
Google Scholar
Tate PH, Bird AP: Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993, 3 (2): 226-231. 10.1016/0959-437X(93)90027-M.
Article
PubMed
Google Scholar
Weih F, Nitsch D, Reik A, Schutz G, Becker PB: Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo. Embo J. 1991, 10 (9): 2559-2567.
PubMed
PubMed Central
Google Scholar
Gaston K, Fried M: CpG methylation and the binding of YY1 and ETS proteins to the Surf-1/Surf-2 bidirectional promoter. Gene. 1995, 157 (1–2): 257-259. 10.1016/0378-1119(95)00120-U.
Article
PubMed
Google Scholar
Choi YS, Kim S, Kyu Lee H, Lee KU, Pak YK: In vitro methylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A. Biochem Biophys Res Commun. 2004, 314 (1): 118-122. 10.1016/j.bbrc.2003.12.065.
Article
PubMed
Google Scholar
Prendergast GC, Ziff EB: Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science. 1991, 251 (4990): 186-189. 10.1126/science.1987636.
Article
PubMed
Google Scholar
Comb M, Goodman HM: CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990, 18 (13): 3975-3982. 10.1093/nar/18.13.3975.
Article
PubMed
PubMed Central
Google Scholar
Bell AC, Felsenfeld G: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000, 405 (6785): 482-485. 10.1038/35013100.
Article
PubMed
Google Scholar
Harrington MA, Jones PA, Imagawa M, Karin M: Cytosine methylation does not affect binding of transcription factor Sp1. Proc Natl Acad Sci USA. 1988, 85 (7): 2066-2070. 10.1073/pnas.85.7.2066.
Article
PubMed
PubMed Central
Google Scholar
Holler M, Westin G, Jiricny J, Schaffner W: Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 1988, 2 (9): 1127-1135. 10.1101/gad.2.9.1127.
Article
PubMed
Google Scholar
Clark SJ, Harrison J, Molloy PL: Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene. 1997, 195 (1): 67-71. 10.1016/S0378-1119(97)00164-9.
Article
PubMed
Google Scholar
Zhu WG, Srinivasan K, Dai Z, Duan W, Druhan LJ, Ding H, Yee L, Villalona-Calero MA, Plass C, Otterson GA: Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol. 2003, 23 (12): 4056-4065. 10.1128/MCB.23.12.4056-4065.2003.
Article
PubMed
PubMed Central
Google Scholar
Mancini DN, Singh SM, Archer TK, Rodenhiser DI: Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene. 1999, 18 (28): 4108-4119. 10.1038/sj.onc.1202764.
Article
PubMed
Google Scholar
Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW, Bulyk ML: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol. 2006, 24 (11): 1429-1435. 10.1038/nbt1246.
Article
PubMed
PubMed Central
Google Scholar
Puckett JW, Muzikar KA, Tietjen J, Warren CL, Ansari AZ, Dervan PB: Quantitative Microarray Profiling of DNA-Binding Molecules. J Am Chem Soc. 2007, 129 (40): 12310-12319. 10.1021/ja0744899.
Article
PubMed
PubMed Central
Google Scholar
Bird AP: CpG-rich islands and the function of DNA methylation. Nature. 1986, 321 (6067): 209-213. 10.1038/321209a0.
Article
PubMed
Google Scholar
Dlugosz AA, Glick AB, Tennenbaum T, Weinberg WC, Yuspa SH: Isolation and utilization of epidermal keratinocytes for oncogene research. Methods Enzymol. 1995, 254: 3-20.
Article
PubMed
Google Scholar
The Farnham laboratory. [http://www.genomecenter.ucdavis.edu/farnham/]
Lippman Z, Gendrel AV, Colot V, Martienssen R: Profiling DNA methylation patterns using genomic tiling microarrays. Nat Methods. 2005, 2 (3): 219-224. 10.1038/nmeth0305-219.
Article
PubMed
Google Scholar
Round A/B/C Random Amplification of DNA Protocol. [http://cat.ucsf.edu/pdfs/22_Round_A_B_C_protocol.pdf]
Gerdes MJ, Myakishev M, Frost NA, Rishi V, Moitra J, Acharya A, Levy MR, Park SW, Glick A, Yuspa SH, et al: Activator protein-1 activity regulates epithelial tumor cell identity. Cancer Res. 2006, 66 (15): 7578-7588. 10.1158/0008-5472.CAN-06-1247.
Article
PubMed
Google Scholar