Erincik O, Madden L, Ferree D, Ellis M. Effect of growth stage on susceptibility of grape berry and rachis tissues to infection by Phomopsis viticola. Plant Dis. 2001;85(5):517–20.
Google Scholar
Siebert J: Eutypa: the economic toll on vineyards. Wines Vines April 2001:50–56
Baumgartner K, Travadon R, Cooper M, Hillis V, Kaplan J, Lubell M: An Economic Evaluation of Early Adoption of Trunk Disease Preventative Practices in Winegrape Vineyards. Poster session presented at: Agricultural and Applied Economics Association Annual Meeting: Minneapolis, Minnesota. 2014.
Munkvold GP, Duthie JA, Marois JJ. Reductions in yield and vegetative growth of grapevines due to Eutypa Dieback. Phytopathology. 1994;84(2):186–92.
Google Scholar
Wicks T, Davies K: The effect of Eutypa on grapevine yield. Aust. Grapegrower Winemaker. Ann Tech Issue. 1999;(426a):15–16.
Rolshausen PE, Urbez-Torres JR, Rooney-Latham S, Eskalen A, Smith RJ, Gubler WD. Evaluation of pruning wound susceptibility and protection against fungi associated with grapevine trunk diseases. Am J Enol Vit. 2010;61(1):113–9.
Google Scholar
Pouzoulet J, Pivovaroff A, Santiago L, Rolshausen PE: Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and Esca disease in grapevine. Front Plant Sci. 2014;5:253.
Travadon R, Baumgartner K. Molecular polymorphism and phenotypic diversity in the eutypa dieback pathogen eutypa lata. Phytopathology. 2015;105(2):255–64.
PubMed
Google Scholar
Mugnai L, Graniti A, Surico G. Esca (Black measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Dis. 1999;83(5):404–18.
Google Scholar
Weber EA, Trouillas FP, Gubler WD. Double pruning of grapevines: a cultural practice to reduce infections by Eutypa lata. Am J Enol Vit. 2007;58(1):61–6.
Google Scholar
Valtaud C, Larignon P, Roblin G, Fleurat-Lessard P. Developmental and ultrastructural features of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum in relation to xylem degradation in Esca disease of the grapevine. J Plant Pathol. 2009;91(1):37–51.
CAS
Google Scholar
Bruno G, Sparapano L. Effects of three esca-associated fungi on Vitis vinifera L.: III. Enzymes produced by the pathogens and their role in fungus-to-plant or in fungus-to-fungus interactions. Physiol Mol Plant P. 2006;69(4–6):182–94.
CAS
Google Scholar
Bruno G, Sparapano L. Effects of three esca-associated fungi on Vitis vinifera: II. Characterization of biomolecules in xylem sap and leaves of healthy and diseased vines. Physiol Mol Plant P. 2006;69(4):195–208.
CAS
Google Scholar
Rolshausen PE, Greve LC, Labavitch JM, Mahoney NE, Molyneux RJ, Gubler WD. Pathogenesis of Eutypa lata in grapevine: identification of virulence factors and biochemical characterization of cordon dieback. Phytopathology. 2008;98(2):222–9.
CAS
PubMed
Google Scholar
Andolfi A, Mugnai L, Luque J, Surico G, Cimmino A, Evidente A. Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins. 2011;3(12):1569.
CAS
PubMed Central
PubMed
Google Scholar
Mahoney N, Lardner R, Molyneux RJ, Scott ES, Smith LR, Schoch TK. Phenolic and heterocyclic metabolite profiles of the grapevine pathogen Eutypa lata. Phytochemistry. 2003;64(2):475–84.
CAS
PubMed
Google Scholar
Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol. 2012;13(1):1–16.
PubMed
Google Scholar
Jones L, Riaz S, Morales-Cruz A, Amrine KC, McGuire B, Gubler WD, et al. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics. 2014;15(1):1081.
PubMed Central
PubMed
Google Scholar
Chatterjee S, Almeida RP, Lindow S. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Phytopathology. 2008;46(1):243.
CAS
Google Scholar
Block KL, Rolshausen PE, Cantu D: In search of solutions to grapevine trunk diseases through “crowd-sourced” science. Front Plant Sci. 2013;4:294.
Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, et al. Grapevine trunk diseases: complex and still poorly understood. Plant Pathol. 2013;62(2):243–65.
Google Scholar
Guttman D, McHardy AC, Schulze-Lefert P: Microbial genome-enabled insights into plant-microorganism interactions. Nat Rev Genet. 2014;5(12):797–813.
Blanco-Ulate B, Rolshausen PE, Cantu D. Draft genome sequence of the grapevine dieback fungus Eutypa lata UCR-EL1. Genome Announc. 2013;1(3):e00228–00213.
PubMed Central
PubMed
Google Scholar
Blanco-Ulate B, Rolshausen P, Cantu D. Draft genome sequence of the ascomycete Phaeoacremonium aleophilum strain UCR-PA7, a causal agent of the esca disease complex in grapevines. Genome Announc. 2013;1(3):e00390–00313.
PubMed Central
PubMed
Google Scholar
Blanco-Ulate B, Rolshausen P, Cantu D. Draft genome sequence of Neofusicoccum parvum isolate UCR-NP2, a fungal vascular pathogen associated with grapevine cankers. Genome Announc. 2013;1(3):e00339–00313.
PubMed Central
PubMed
Google Scholar
Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, et al. NPP1, a Phytophthora‐associated trigger of plant defense in parsley and Arabidopsis. Plant J. 2002;32(3):375–90.
CAS
PubMed
Google Scholar
Han Y, Liu X, Benny U, Kistler HC, VanEtten HD. Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. Plant J. 2001;25(3):305–14.
CAS
PubMed
Google Scholar
Yang G, Rose MS, Turgeon BG, Yoder O. A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell. 1996;8(11):2139–50.
CAS
PubMed Central
PubMed
Google Scholar
Beeson WT, Phillips CM, Cate JH, Marletta MA. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc. 2011;134(2):890–2.
PubMed
Google Scholar
Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen J-CN, Johansen KS, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A. 2011;108(37):15079–84.
CAS
PubMed Central
PubMed
Google Scholar
Demuth JP, Hahn MW. The life and death of gene families. Bioessays. 2009;31(1):29–39.
PubMed
Google Scholar
Wapinski I, Pfeffer A, Friedman N, Regev A. Natural history and evolutionary principles of gene duplication in fungi. Nature. 2007;449(7158):54–61.
CAS
PubMed
Google Scholar
Conant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet. 2008;9(12):938–50.
CAS
PubMed
Google Scholar
Lespinet O, Wolf YI, Koonin EV, Aravind L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 2002;12(7):1048–59.
CAS
PubMed Central
PubMed
Google Scholar
Powell AJ, Conant GC, Brown DE, Carbone I, Dean RA. Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics. 2008;9(1):147.
PubMed Central
PubMed
Google Scholar
Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009;19(10):1722–31.
CAS
PubMed Central
PubMed
Google Scholar
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336(6089):1715–9.
CAS
PubMed
Google Scholar
Prieto M, Wedin M. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One. 2013;8(6):e65576.
CAS
PubMed Central
PubMed
Google Scholar
Simpson JT. Exploring genome characteristics and sequence quality without a reference. Bioinformatics. 2014;30(9):1228–35.
CAS
PubMed Central
PubMed
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23(9):1061–7.
CAS
PubMed
Google Scholar
Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011;7(8):e1002230.
CAS
PubMed Central
PubMed
Google Scholar
Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32 suppl 2:W309–12.
CAS
PubMed Central
PubMed
Google Scholar
Antonielli L, Compant S, Strauss J, Sessitsch A, Berger H. Draft genome sequence of Phaeomoniella chlamydospora strain RR-HG1, a grapevine trunk disease (Esca)-related member of the Ascomycota. Genome Announc. 2014;2(2):e00098–00014.
PubMed Central
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
CAS
PubMed Central
PubMed
Google Scholar
Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18(1):188–96.
CAS
PubMed Central
PubMed
Google Scholar
Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, et al. PHI-base update: additions to the pathogen–host interaction database. Nucleic Acids Res. 2008;36 suppl 1:D572–6.
CAS
PubMed Central
PubMed
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37 suppl 1:D233–8.
CAS
PubMed Central
PubMed
Google Scholar
Suzuki H, MacDonald J, Syed K, Salamov A, Hori C, Aerts A, et al. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics. 2012;13(1):444.
CAS
PubMed Central
PubMed
Google Scholar
Blanco-Ulate B, Morales-Cruz A, Amrine KCH, Labavitch JM. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Front Plant Sci. 2014;5:435.
Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6(1):41.
CAS
PubMed Central
PubMed
Google Scholar
Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A. 2014;111(27):9923–8.
CAS
PubMed Central
PubMed
Google Scholar
Chen W, Lee M-K, Jefcoate C, Kim S-C, Chen F, Yu J-H. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol. 2014;6(7):1620–34.
CAS
PubMed Central
PubMed
Google Scholar
Lepesheva GI, Waterman MR. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. BBA-Gen Subjects. 2007;1770(3):467–77.
CAS
Google Scholar
Moktali V, Park J, Fedorova-Abrams ND, Park B, Choi J, Lee Y-H, et al. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics. 2012;13(1):525.
CAS
PubMed Central
PubMed
Google Scholar
Molina L, Kahmann R. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell. 2007;19(7):2293–309.
CAS
PubMed Central
PubMed
Google Scholar
Choi J, Détry N, Kim K-T, Asiegbu FO, Valkonen JP, Lee Y-H. fPoxDB: fungal peroxidase database for comparative genomics. BMC Microbiol. 2014;14(1):117.
PubMed Central
PubMed
Google Scholar
Coleman JJ, Mylonakis E. Efflux in fungi: la pièce de résistance. PLoS Pathog. 2009;5(6):e1000486.
PubMed Central
PubMed
Google Scholar
Wang Y, Lim L, DiGuistini S, Robertson G, Bohlmann J, Breuil C. A specialized ABC efflux transporter GcABC‐G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle‐associated fungal pathogen of pine trees. New Phytol. 2013;197(3):886–98.
CAS
PubMed
Google Scholar
Choquer M, Lee M-H, Bau H-J, Chung K-R. Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Lett. 2007;581(3):489–94.
CAS
PubMed
Google Scholar
Tabacchi R, Fkyerat A, Poliart C, Dubin G-M. Phytotoxins from fungi of Esca of grapevine. Phytopathol Mediterr. 2000;39(1):156–61.
CAS
Google Scholar
Bruno G, Sparapano L. Effects of three esca-associated fungi on Vitis vinifera: I. Characterization of secondary metabolites in culture media and host responses to the pathogens in calli. Physiol Mol Plant P. 2006;69(4):209–23.
CAS
Google Scholar
Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2012;11(1):21–32.
PubMed
Google Scholar
Keller NP, Turner G, Bennett JW. Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937–47.
CAS
PubMed
Google Scholar
Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, et al: antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 2013; doi:10.1093/nar/gkt449.
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71.
PubMed
Google Scholar
Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianini N. Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res. 2005;15(8):1153–60.
CAS
PubMed Central
PubMed
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
CAS
PubMed Central
PubMed
Google Scholar
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7(1):214.
PubMed Central
PubMed
Google Scholar
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature. 2006;443(7113):818–22.
CAS
PubMed
Google Scholar
Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, et al. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biol. 2009;58(2):224–39.
CAS
Google Scholar
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–84.
CAS
PubMed Central
PubMed
Google Scholar
Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3(2):217–23.
Google Scholar
O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet. 2012;44(9):1060–5.
PubMed
Google Scholar
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2011;13(1):36–46.
PubMed Central
PubMed
Google Scholar
Alkan C, Sajjadian S, Eichler EE. Limitations of next-generation genome sequence assembly. Nat Methods. 2011;8(1):61–5.
CAS
PubMed Central
PubMed
Google Scholar
Kidd JM, Sampas N, Antonacci F, Graves T, Fulton R, Hayden HS, et al. Characterization of missing human genome sequences and copy-number polymorphic insertions. Nat Meth. 2010;7(5):365–71.
CAS
Google Scholar
Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. Extensive error in the number of genes inferred from draft genome assemblies. PLoS Comput Biol. 2014;10(12):e1003998.
PubMed Central
PubMed
Google Scholar
Cornell MJ, Alam I, Soanes DM, Wong HM, Hedeler C, Paton NW, et al. Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi. Genome Res. 2007;17(12):1809–22.
CAS
PubMed Central
PubMed
Google Scholar
Perez-Nadales E, Nogueira MFA, Baldin C, Castanheira S, El Ghalid M, Grund E, et al. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol. 2014;70:42–67.
CAS
PubMed Central
PubMed
Google Scholar
Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, Vienne DM, et al. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol. 2014;23(4):753–73.
PubMed
Google Scholar
Ohm RA, Riley R, Salamov A, Min B, Choi I-G, Grigoriev IV: Genomics of wood-degrading fungi. Fungal Genet Biol. 2014;72:82–90
Duplessis S, Cuomo CA, Lin Y-C, Aerts A, Tisserant E, Veneault-Fourrey C, et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A. 2011;108(22):9166–71.
CAS
PubMed Central
PubMed
Google Scholar
Martin F, Aerts A, Ahrén D, Brun A, Danchin E, Duchaussoy F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452(7183):88–92.
CAS
PubMed
Google Scholar
Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–62.
CAS
PubMed Central
PubMed
Google Scholar
Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotech. 2004;22(6):695–700.
CAS
Google Scholar
Hu X, Xiao G, Zheng P, Shang Y, Su Y, Zhang X, et al. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci U S A. 2014;111(47):16796–801.
CAS
PubMed Central
PubMed
Google Scholar
Kondrashov FA: Gene duplication as a mechanism of genomic adaptation to a changing environment. Proceedings of the Royal Society B: Biological Sciences. 2012;279(1749):5048–57.
Schmidt JM, Good RT, Appleton B, Sherrard J, Raymant GC, Bogwitz MR, et al. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet. 2010;6(6):e1000998.
PubMed Central
PubMed
Google Scholar
Paudel Y, Madsen O, Megens H-J, Frantz LA, Bosse M, Bastiaansen JW, et al. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics. 2013;14(1):449.
CAS
PubMed Central
PubMed
Google Scholar
Zhao Z, Liu H, Wang C, Xu J-R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2013;14(1):274.
CAS
PubMed Central
PubMed
Google Scholar
Travadon R, Rolshausen PE, Gubler WD, Cadle-Davidson L, Baumgartner K. Susceptibility of cultivated and vild Vitis spp to wood infection by fungal trunk pathogens. Plant Dis. 2013;97(12):1529–36.
Google Scholar
Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BPHJ, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog. 2011;7(7):e1002137.
CAS
PubMed Central
PubMed
Google Scholar
Worrall JJ, Anagnost SE, Zabel RA: Comparison of wood decay among diverse lignicolous fungi. Mycologia. 1997;89(2):199–219.
Zamocky M, Ludwig R, Peterbauer C, Hallberg B, Divne C, Nicholls P, et al. Cellobiose dehydrogenase-A flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci. 2006;7(3):255–80.
CAS
PubMed
Google Scholar
Kremer S, Wood P. Cellobiose oxidase from Phanerochaete chrysosporium as a source of Fenton’s reagent. Biochem Soc Trans. 1992;20(2):110S.
CAS
PubMed
Google Scholar
Harris PJ, Stone BA: Chemistry and molecular organization of plant cell walls; 2008.
Octave S, Roblin G, Vachaud M, Fleurat-Lessard P. Polypeptide metabolites secreted by the fungal pathogen Eutypa lata participate in Vitis vinifera cell structure damage observed in Eutypa dieback. Funct Plant Biol. 2006;33(3):297–307.
CAS
Google Scholar
Bruno G, Sparapano L, Graniti A. Effects of three esca-associated fungi on Vitis vinifera: IV. Diffusion through the xylem of metabolites produced by two tracheiphilous fungi in the woody tissue of grapevine leads to esca-like symptoms on leaves and berries. Physiol Mol Plant P. 2007;71(1):106–24.
CAS
Google Scholar
Evidente A, Punzo B, Andolfi A, Cimmino A, Melck D, Luque J. Lipophilic phytotoxins produced by Neofusicoccum parvum, a grapevine canker agent. Phytopathol Mediterr. 2010;49(1):74–9.
CAS
Google Scholar
Luini E, Fleurat-Lessard P, Rousseau L, Roblin G, Berjeaud J-M. Inhibitory effects of polypeptides secreted by the grapevine pathogens Phaeomoniella chlamydospora and Phaeoacremonium aleophilum on plant cell activities. Physiol Mol Plant Pathol. 2010;74(5–6):403–11.
CAS
Google Scholar
Goddard M-L, Mottier N, Jeanneret-Gris J, Christen D, Tabacchi R, Abou-Mansour E. Differential production of phytotoxins from Phomopsis sp from grapevine plants showing Esca Symptoms. J Agr Food Chem. 2014;62(34):8602–7.
CAS
Google Scholar
Osbourn A. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet. 2010;26(10):449–57.
CAS
PubMed
Google Scholar
Amponsah NT, Jones EE, Ridgway HJ, Jaspers MV. Identification, potential inoculum sources and pathogenicity of botryosphaeriaceous species associated with grapevine dieback disease in New Zealand. Eur J Plant Pathol. 2011;131(3):467–82.
Google Scholar
Bénard-Gellon M, Farine S, Goddard M, Schmitt M, Stempien E, Pensec F, et al: Toxicity of extracellular proteins from Diplodia seriata and Neofusicoccum parvum involved in grapevine Botryosphaeria dieback. Protoplasma. 2014;252:679–87.
Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A. 2009;106(6):1954–9.
CAS
PubMed Central
PubMed
Google Scholar
Ichinose H, Wariishi H, Tanaka H. Molecular analysis of arylalcohol dehydrogenase of Coriolus versicolor expressed against exogenous addition of dibenzothiophene derivatives. J Basic Microb. 2002;42(5):327–36.
CAS
Google Scholar
Črešnar B, Petrič Š. Cytochrome P450 enzymes in the fungal kingdom. BBA-Gen Subjects. 2011;1814(1):29–35.
Google Scholar
Maloney AP, VanEtten HD. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol Gen Genet. 1994;243(5):506–14.
CAS
PubMed
Google Scholar
Wang B, Kang Q, Lu Y, Bai L, Wang C. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci U S A. 2012;109(4):1287–92.
CAS
PubMed Central
PubMed
Google Scholar
Anco DJ, Kim S, Mitchell TK, Madden LV, Ellis MA: Transformation of Phomopsis viticola with the green fluorescent protein. Mycologia 2009, 101(6):853–8.
PubMed
Google Scholar
Bradshaw R, Duan G, Long PG. Transformation of fungal grapevine trunk disease pathogens with the green fluorescent protein gene. Phytopathol Mediterr. 2005;44(2):162–8.
CAS
Google Scholar
Cantu D, Segovia V, MacLean D, Bayles R, Chen X, Kamoun S, et al. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics. 2013;14(1):270.
CAS
PubMed Central
PubMed
Google Scholar
Möller E, Bahnweg G, Sandermann H, Geiger H. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 1992;20(22):6115.
PubMed Central
PubMed
Google Scholar
Joshi N, Fass J: Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files In. (Available at https://github.com/najoshi/sickle; 2011.
Buffalo V: Scythe - A Bayesian adapter trimmer. In., 0.991 edn. https://github.com/vsbuffalo/scythe; 2011.
Bradnam K, Fass J, Alexandrov A, Baranay P, Bechner M, Birol I, et al. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience. 2013;2:10.
PubMed Central
PubMed
Google Scholar
RepeatModeler Open-1.0
Smit A, Hubley R, Green P: RepeatMasker Open-3.0. In. http://www.repeatmasker.org 1996–2010.
Eriksson KE, Pettersson B. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Eur J Biochem. 1975;51(1):193–206.
CAS
PubMed
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
CAS
PubMed Central
PubMed
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
CAS
PubMed
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(D1):D222–30.
CAS
PubMed Central
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4.
CAS
PubMed
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biol. 2010;59(3):307–21.
CAS
Google Scholar
Han MV, Thomas GW, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol. 2013;30(8):1987–97.
CAS
PubMed
Google Scholar
Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC. CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology. 2010;20(12):1574–84.
CAS
PubMed
Google Scholar
Nelson DR. The cytochrome p450 homepage. Hum Genomics. 2009;4(1):59.
CAS
PubMed Central
PubMed
Google Scholar
Saier MH, Reddy VS, Tamang DG, Västermark Å. The transporter classification database. Nucleic Acids Res. 2014;42(D1):D251–8.
CAS
PubMed Central
PubMed
Google Scholar