Costerton JW, Stewart PS, Greenberg EP. Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 1999;284(5418):1318–22.
Article
CAS
PubMed
Google Scholar
Bogino PC, de las Mercedes Oliva M, Sorroche FG, Giordano W. The Role of Bacterial Biofilms and Surface Components in Plant-Bacterial Associations. Int J Mol Sci. 2013;14(8):15838–59.
Article
PubMed
PubMed Central
Google Scholar
Karatan E, Watnick P. Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms. Microbiol Mol Biol Rev. 2009;73(2):310–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrova OE, Cherny KE, Sauer K. The Diguanylate Cyclase GcbA Facilitates Pseudomonas aeruginosa Biofilm Dispersion by Activating BdlA. J Bacteriol. 2015;197(1):174–87.
Article
PubMed
PubMed Central
Google Scholar
Beloin C, Roux A, Ghigo J-M. Escherichia coli biofilms. Curr Top Microbiol Immunol. 2008;322:249–89.
CAS
PubMed
PubMed Central
Google Scholar
Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33.
CAS
PubMed
Google Scholar
Laverty G, Gorman SP, Gilmore BF. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation. Pathogens. 2014;3(3):596–632.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.
Article
CAS
PubMed
Google Scholar
Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013;64:175–88.
Article
CAS
PubMed
Google Scholar
Kaplan JB. Biofilm Dispersal. J Dent Res. 2010;89(3):205–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012;10(1):39–50.
CAS
Google Scholar
Kaplan JB, Ragunath C, Ramasubbu N, Fine DH. Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous β-Hexosaminidase Activity. J Bacteriol. 2003;185(16):4693–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol. 2010;75(4):815–26.
Article
CAS
PubMed
Google Scholar
Cho C, Chande A, Gakhar L, Bakaletz LO, Jurcisek JA, Ketterer M, et al. Role of the Nuclease of Nontypeable Haemophilus influenzae in Dispersal of Organisms from Biofilms. Infect Immun. 2014. doi: 10.1128/IAI.02601-14
Wang R, Khan BA, Cheung GYC, Bach T-HL, Jameson-Lee M, Kong K-F, et al. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest. 2011;121(1):238–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Periasamy S, Joo H-S, Duong AC, Bach T-HL, Tan VY, Chatterjee SS, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A. 2012;109(4):1281–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J. 2009;3(3):271–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossmann FS, Racek T, Wobser D, Puchalka J, Rabener EM, Reiger M, et al. Phage-mediated Dispersal of Biofilm and Distribution of Bacterial Virulence Genes Is Induced by Quorum Sensing. PLoS Pathog. 2015;11(2):e1004653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, et al. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol. 2004;51(3):659–74.
Article
CAS
PubMed
Google Scholar
Dötsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, et al. The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing. PLoS ONE. 2012;7(2):e31092.
Article
PubMed
PubMed Central
Google Scholar
Rumbo-Feal S, Gómez MJ, Gayoso C, Alvarez-Fraga L, Cabral MP, Aransay AM, et al. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS One. 2013;8(8):e72968.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balestrino D, Ghigo J-M, Charbonnel N, Haagensen JAJ, Forestier C. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 2008;10(3):685–701.
Article
CAS
PubMed
Google Scholar
Schroll C, Barken KB, Krogfelt KA, Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010;10:179.
Article
PubMed
PubMed Central
Google Scholar
Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 2014;5:4462.
Article
CAS
PubMed
Google Scholar
Chua SL, Hultqvist LD, Yuan M, Rybtke M, Nielsen TE, Givskov M, et al. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation. Nat Protoc. 2015;10(8):1165–80.
Article
CAS
PubMed
Google Scholar
Lange R, Hengge-Aronis R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol. 1991;5(1):49–59.
Article
CAS
PubMed
Google Scholar
Dong T, Schellhorn HE. Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics. 2009;10:349.
Article
PubMed
PubMed Central
Google Scholar
Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807(11):1398–413.
Article
CAS
PubMed
PubMed Central
Google Scholar
VanOrsdel CE, Bhatt S, Allen RJ, Brenner EP, Hobson JJ, Jamil A, et al. The Escherichia coli CydX Protein Is a Member of the CydAB Cytochrome bd Oxidase Complex and Is Required for Cytochrome bd Oxidase Activity. J Bacteriol. 2013;195(16):3640–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mika F, Hengge R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol. 2014;11(5):494–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacKenzie KD, Wang Y, Shivak DJ, Wong CS, Hoffman LJL, Lam S, et al. Bistable Expression of CsgD in Salmonella enterica Serovar Typhimurium Connects Virulence to Persistence. Infect Immun. 2015;83(6):2312–26.
Article
PubMed
PubMed Central
Google Scholar
Waite RD, Paccanaro A, Papakonstantinopoulou A, Hurst JM, Saqi M, Littler E, et al. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics. 2006;7:162.
Article
PubMed
PubMed Central
Google Scholar
Valle J, Da Re S, Schmid S, Skurnik D, D’Ari R, Ghigo J-M. The Amino Acid Valine Is Secreted in Continuous-Flow Bacterial Biofilms. J Bacteriol. 2008;190(1):264–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, et al. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics. 2009;10:599.
Article
PubMed
PubMed Central
Google Scholar
Domka J, Lee J, Wood TK. YliH (BssR) and YceP (BssS) Regulate Escherichia coli K-12 Biofilm Formation by Influencing Cell Signaling. Appl Environ Microbiol. 2006;72(4):2449–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuczyńska-Wiśnik D, Matuszewska E, Laskowska E. Escherichia coli heat-shock proteins IbpA and IbpB affect biofilm formation by influencing the level of extracellular indole. Microbiol Read Engl. 2010;156:148–57.
Article
Google Scholar
Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96–104.
Article
CAS
PubMed
Google Scholar
Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev. 2013;37(2):156–81.
Article
CAS
PubMed
Google Scholar
Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, et al. Cell Death in Pseudomonas aeruginosa Biofilm Development. J Bacteriol. 2003;185(15):4585–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brissette JL, Russel M, Weiner L, Model P. Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci U S A. 1990;87(3):862–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darwin AJ. Stress Relief during Host Infection: The Phage Shock Protein Response Supports Bacterial Virulence in Various Ways. PLoS Pathog. 2013;9(7):e1003388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy AB, Petrova OE, Sauer K. The Phosphodiesterase DipA (PA5017) Is Essential for Pseudomonas aeruginosa Biofilm Dispersion. J Bacteriol. 2012;194(11):2904–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, et al. MrkH, a Novel c-di-GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression. PLoS Pathog. 2011;7(8):e1002204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barraud N, Hassett DJ, Hwang S-H, Rice SA, Kjelleberg S, Webb JS. Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006;188(21):7344–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takada H, Morita M, Shiwa Y, Sugimoto R, Suzuki S, Kawamura F, et al. Cell motility and biofilm formation in Bacillus subtilis are affected by the ribosomal proteins, S11 and S21. Biosci Biotechnol Biochem. 2014;78(5):898–907.
Article
CAS
PubMed
Google Scholar
Chacón KN, Mealman TD, McEvoy MM, Blackburn NJ. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proc Natl Acad Sci U S A. 2014;111(43):15373–8.
Article
PubMed
PubMed Central
Google Scholar
Guilhen C, Taha M-K, Veyrier FJ. Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Front Cell Infect Microbiol. 2013;3:102.
Article
PubMed
PubMed Central
Google Scholar
Yan Y, Su S, Meng X, Ji X, Qu Y, Liu Z, et al. Determination of sRNA Expressions by RNA-seq in Yersinia pestis Grown In Vitro and during Infection. PLoS ONE. 2013;8(9):e74495.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega ÁD, Gonzalo-Asensio J, Portillo FG. Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. RNA Biol. 2012;9(4):469–88.
Article
CAS
PubMed
Google Scholar
Guilhen C, Iltis A, Forestier C, Balestrino D. Genome Sequence of a Clinical Klebsiella pneumoniae Sequence Type 6 Strain. Genome Announc. 2015;3(6):e01311-5.
Weiss Nielsen M, Sternberg C, Molin S, Regenberg B. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells. J Vis Exp JoVE. 2011;(47):e2383.
Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature. 2009;459(7249):950–6.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherlock G. Analysis of large-scale gene expression data. Curr Opin Immunol. 2000;12(2):201–5.
Article
CAS
PubMed
Google Scholar