MacCrimmon HR, Gots BL. World distribution of Atlantic salmon, salmon salar. J Fish Res Board Can. 1979;36:422–57.
Article
Google Scholar
Verspoor E, McCarthy EM, Knox D, Bourke EA, Cross TF. The phylogeography of european Atlantic salmon (salmo salar L.) based on RFLP analysis of the ND1/16sRNA region of the mtDNA. Biol J Linn Soc. 1999;68:129–46.
Article
Google Scholar
King TL, Kalinowski ST, Schill WB, Spidle AP, Lubinski BA. Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation. Mol Ecol. 2001;10:807–21.
Article
CAS
PubMed
Google Scholar
Taggart JB, Verspoor E, Galvin PT, Moran P, Ferguson A. A minisatellite DNA marker for discriminating between European and North American Atlantic salmon (Salmo salar). Can J Fish Aquat Sci. 1995;52:2305–11.
Article
CAS
Google Scholar
Ståhl G. Genetic Population Structure of Atlantic Salmon, Population genetics & Fishery Management. Seattle: University of Washington Press; 1987.
Google Scholar
Tonteri A, Titov S, Veselov A, Zubchenko A, Koskinen MT, Lesbarreres D, Kaluzhin S, Bakhmet I, Lumme J, Primmer CR. Phylogeography of anadromous and non-anadromous Atlantic salmon (Salmo salar) from northern Europe. Ann Zoologici Fennici. 2005;42:1–22.
Google Scholar
Vincent B, Dionne M, Kent MP, Lien S, Bernatchez L. Landscape genomics in Atlantic salmon (salmo salar): searching for gene–environment interactions driving local adaptation. Evolution. 2013;67:3469–87.
Article
PubMed
Google Scholar
Koljonen M-L, Tähtinen J, Säisä M, Koskiniemi J. Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture. 2002;212:69–92.
Article
CAS
Google Scholar
Ayllon F, Martinez JL, Garcia-Vazquez E. Loss of regional population structure in Atlantic salmon, Salmo salar L., following stocking. ICES J Mar Sci. 2006;63:1269–73.
Article
CAS
Google Scholar
Olafsson K, Pampoulie C, Hjorleifsdottir S, Gudjonsson S, Hreggvidsson GO. Present-Day genetic structure of Atlantic salmon (salmo salar) in Icelandic rivers and Ice-Cap retreat models. PLoS One. 2014;9(2):e86809.
Article
PubMed
PubMed Central
Google Scholar
Primmer CR, Veselov AJ, Zubchenko A, Poututkin A, Bakhmet I, Koskinen MT. Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Mol Ecol. 2006;15:653–66.
Article
CAS
PubMed
Google Scholar
Vähä J-P, Erkinaro J, NiemelÄ E, Primmer CR. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol. 2007;16:2638–54.
Article
PubMed
Google Scholar
Dillane E, McGinnity P, Coughlan JP, Cross MC, de Eyto E, Kenchington E, Prodohl P, Cross TF. Demographics and landscape features determine intrariver population structure in Atlantic salmon (Salmo salar L.): the case of the River Moy in Ireland. Mol Ecol. 2008;17:4786–800.
Article
CAS
PubMed
Google Scholar
Taylor EB. A review of local adaptation in Salmonidac, with particular reference to Pacific and Atlantic salmon. Aquaculture. 1991;98:185–207.
Article
Google Scholar
Ryman N, Utter F. Population genetics and fishery management. Seattle: University of Washington Press; 1987.
Google Scholar
de Leániz CG, Fleming IA, Einum S, Verspoor E, Consuegra S, Jordan WC, Aubin-Horth N, Lajus DL, Villanueva B, Ferguson A, et al.: Local Adaptation. In The Atlantic Salmon: Genetics, Conservation and Management. Blackwell Publishing Ltd; 2007: 195–235
Thorstad EB, Whoriskey F, Rikardsen AH, Aarestrup K: Aquatic Nomads: The Life and Migrations of the Atlantic Salmon. In Atlantic Salmon Ecology. Wiley-Blackwell; 2010: 1–32
Verspoor E, Jordan WC. Genetic variation at the Me-2 locus in the Atlantic salmon within and between rivers: evidence for its selective maintenance. J Fish Biol. 1989;35:205–13.
Article
Google Scholar
Tonteri A, Vasemägi A, Lumme J, Primmer CR. Beyond MHC: signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Mol Ecol. 2010;19:1273–82.
Article
CAS
PubMed
Google Scholar
Dionne M, Miller KM, Dodson JJ, Caron F, Bernatchez L. Clinal variation in MHC diversity with temperature: evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon. Evolution. 2007;61:2154–64.
Article
CAS
PubMed
Google Scholar
Dionne M, Miller KM, Dodson JJ, Bernatchez L. MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Philos Trans R Soc Lon B. 2009;364:1555–65.
Article
CAS
Google Scholar
Dempsey PW, Vaidya SA, Cheng G. The Art of War: innate and adaptive immune responses. Cell Mol Life Sci. 2003;60:2604–21.
Article
CAS
PubMed
Google Scholar
Burge CA, Mark Eakin C, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, et al. Climate change influences on marine infectious diseases: implications for management and society. Ann Rev Mar Sci. 2014;6:249–77.
Article
PubMed
Google Scholar
Ficke AD, Myrick CA, Hansen LJ. Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fisheries. 2007;17:581–613.
Article
Google Scholar
Davidson WS, Koop BF, Jones SJ, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW. Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol. 2010;11:403.
PubMed
PubMed Central
Google Scholar
Moen T, Torgersen J, Santi N, Davidson WS, Baranski M, Ødegård J, Kjøglum S, Velle B, Kent M, Lubieniecki KP, et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics. 2015;200:1313–26.
Article
PubMed
PubMed Central
Google Scholar
Ayllon F, Kjærner-Semb E, Furmanek T, Wennevik V, Solberg M, Dahle G, Taranger GL, Glover KA, Almen MS, Rubin CJ, et al. The vgll3 locus controls Age at maturity in wild and domesticated Atlantic salmon (salmo salar L.) males. PLoS Genet. 2015;11(11):e1005628.
Article
PubMed
PubMed Central
Google Scholar
Barson NJ, Aykanat T, Hindar K, Baranski M, Bolstad GH, Fiske P, Jacq C, Jensen AJ, Johnston SE, Karlsson S, et al.: Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature. 2015.
Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL. Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A. 2012;109:13698–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian W, Zhang J. Genomic evidence for adaptation by gene duplication. Genome Res. 2014;24:1356–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourret V, Kent MP, Primmer CR, Vasemagi A, Karlsson S, Hindar K, McGinnity P, Verspoor E, Bernatchez L, Lien S. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Mol Ecol. 2013;22:532–51.
Article
CAS
PubMed
Google Scholar
Glover KA, Quintela M, Wennevik V, Besnier F, Sorvik AG, Skaala O. Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One. 2012;7:e43129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozerov M, Vasemagi A, Wennevik V, Diaz-Fernandez R, Kent M, Gilbey J, Prusov S, Niemela E, Vaha JP. Finding markers that make a difference: DNA pooling and SNP-arrays identify population informative markers for genetic stock identification. PLoS One. 2013;8:e82434.
Article
PubMed
PubMed Central
Google Scholar
Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST: the impact of rare variants. Genome Res. 2013;23:1514–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974;23:23–35.
Article
CAS
PubMed
Google Scholar
Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alfoldi J, Barrio AM, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science. 2014;345:1074–9.
Article
CAS
PubMed
Google Scholar
Omura M, Mombaerts P. Trpc2-expressing sensory neurons in the main olfactory epithelium of the mouse. Cell Rep. 2014;8:583–95.
Article
CAS
PubMed
Google Scholar
Kaufmann M, Feijs KL, Luscher B. Function and regulation of the mono-ADP-ribosyltransferase ARTD10. Curr Top Microbiol Immunol. 2015;384:167–88.
CAS
PubMed
Google Scholar
Kind B, Muster B, Staroske W, Herce HD, Sachse R, Rapp A, Schmidt F, Koss S, Cardoso MC, Lee-Kirsch MA. Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi-Goutieres syndrome. Hum Mol Genet. 2014;23:5950–60.
Article
CAS
PubMed
Google Scholar
Hodgson A, Wan F: Interference with nuclear factor kappaB signaling pathway by pathogen-encoded proteases: global and selective inhibition. Mol Microbiol. 2015.
Thapa P, Das J, McWilliams D, Shapiro M, Sundsbak R, Nelson-Holte M, Tangen S, Anderson J, Desiderio S, Hiebert S, et al. The transcriptional repressor NKAP is required for the development of iNKT cells. Nat Commun. 2013;4:1582.
Article
PubMed
PubMed Central
Google Scholar
Burgute BD, Peche VS, Steckelberg AL, Glockner G, Gassen B, Gehring NH, Noegel AA. NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Res. 2014;42:3177–93.
Article
CAS
PubMed
Google Scholar
Cofre C, Gonzalez R, Moya J, Vidal R. Phenotype gene expression differences between resistant and susceptible salmon families to IPNV. Fish Physiol Biochem. 2014;40:887–96.
Article
CAS
PubMed
Google Scholar
Mitchell PS, Emerman M, Malik HS. An evolutionary perspective on the broad antiviral specificity of MxA. Curr Opin Microbiol. 2013;16:493–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Vidal SM. Functional diversity of Mx proteins: variations on a theme of host resistance to infection. Genome Res. 2002;12:527–30.
Article
CAS
PubMed
Google Scholar
Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, Hue S, Barclay WS, Schulz R, Malim MH. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature. 2013;502:559–62.
Article
CAS
PubMed
Google Scholar
Sironi M, Biasin M, Cagliani R, Gnudi F, Saulle I, Ibba S, Filippi G, Yahyaei S, Tresoldi C, Riva S, et al. Evolutionary analysis identifies an MX2 haplotype associated with natural resistance to HIV-1 infection. Mol Biol Evol. 2014;31:2402–14.
Article
PubMed
Google Scholar
Mitchell PS, Patzina C, Emerman M, Haller O, Malik HS, Kochs G. Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA. Cell Host Microbe. 2012;12:598–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki K, Yoneda A, Ninomiya A, Kawahara M, Watanabe T. Both antiviral activity and intracellular localization of chicken Mx protein depend on a polymorphism at amino acid position 631. Biochem Biophys Res Commun. 2013;430:161–6.
Article
CAS
PubMed
Google Scholar
Ko JH, Takada A, Mitsuhashi T, Agui T, Watanabe T. Native antiviral specificity of chicken Mx protein depends on amino acid variation at position 631. Anim Genet. 2004;35:119–22.
Article
CAS
PubMed
Google Scholar
Nakajima E, Morozumi T, Tsukamoto K, Watanabe T, Plastow G, Mitsuhashi T. A naturally occurring variant of porcine Mx1 associated with increased susceptibility to influenza virus in vitro. Biochem Genet. 2007;45:11–24.
Article
CAS
PubMed
Google Scholar
Abollo E, Ordas C, Dios S, Figueras A, Novoa B. Molecular characterisation of a turbot Mx cDNA. Fish Shellfish Immunol. 2005;19:185–90.
Article
CAS
PubMed
Google Scholar
Trobridge GD, LaPatra SE, Kim CH, Leong JC. Mx mRNA expression and RFLP analysis of rainbow trout Oncorhynchus mykiss genetic crosses selected for susceptibility or resistance to IHNV. Dis Aquat Organ. 2000;40:1–7.
Article
CAS
PubMed
Google Scholar
Purcell MK, Lapatra SE, Woodson JC, Kurath G, Winton JR. Early viral replication and induced or constitutive immunity in rainbow trout families with differential resistance to Infectious hematopoietic necrosis virus (IHNV). Fish Shellfish Immunol. 2010;28:98–105.
Article
CAS
PubMed
Google Scholar
Daugherty MD, Malik HS. Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet. 2012;46:677–700.
Article
CAS
PubMed
Google Scholar
Gidskehaug L, Kent M, Hayes BJ, Lien S. Genotype calling and mapping of multisite variants using an Atlantic salmon iSelect SNP array. Bioinformatics. 2011;27:303–10.
Article
CAS
PubMed
Google Scholar
Ohno S, Wolf U, Atkin NB. Evolution from fish to mammals by gene duplication. Hereditas. 1968;59:169–87.
Article
CAS
PubMed
Google Scholar
Warren IA, Ciborowski KL, Casadei E, Hazlerigg DG, Martin S, Jordan WC, Sumner S. Extensive local gene duplication and functional divergence among paralogs in Atlantic salmon. Genome Biol Evol. 2014;6:1790–805.
Article
PubMed
PubMed Central
Google Scholar
Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics. 2014;289:1045–60.
Article
CAS
PubMed
Google Scholar
Gjedrem T, Gjoen HM, Gjerde B. Genetic-origin of Norwegian farmed Atlantic salmon. Aquaculture. 1991;98:41–50.
Article
Google Scholar
Glover KA, Pertoldi C, Besnier F, Wennevik V, Kent M, Skaala Ø. Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genet. 2013;14:4.
Google Scholar
Skaala O, Wennevik V, Glover KA. Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. Ices J Mar Sci. 2006;63:1224–33.
Article
CAS
Google Scholar
Collet B. Innate immune responses of salmonid fish to viral infections. Dev Comp Immunol. 2014;43:160–73.
Article
CAS
PubMed
Google Scholar
Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS One. 2014;9:e108622.
Article
PubMed
PubMed Central
Google Scholar
Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz RW, Edvardsen RB. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep. 2016;6:21284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taranger GL, Karlsen O, Bannister RJ, Glover KA, Husa V, Karlsbakk E, Kvamme BO, Boxaspen KK, Bjorn PA, Finstad B, et al. Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. Ices J Mar Sci. 2015;72:997–1021.
Article
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome project data processing S: the sequence alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
Kofler R, Pandey RV, Schlotterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics. 2011;27:3435–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fink WL. Microcomputers and phylogenetic analysis. Science. 1986;234:1135–9.
Article
CAS
PubMed
Google Scholar
Perriere G, Gouy M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie. 1996;78:364–9.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc B Met. 1995;57:289–300.
Google Scholar