Christie WJ. A review of the changes in the fish species composition of Lake Ontrario. In: Technical Reports. Ann Arbor: Great Lakes Fishery Commission; 1973.
Google Scholar
Smith BR, Tibbles JJ. Sea lamprey (Petromyzon marinus) in Lakes Huron, Michigan, and superior - history of invasion and control, 1936–78. Can J Fish Aquat Sci. 1980;37(11):1780–801.
Article
Google Scholar
Bronte CR, Ebener MP, Schreiner DR, DeVault DS, Petzold MM, Jensen DA, Richards C, Lozano SJ. Fish community change in lake superior, 1970–2000. Can J Fish Aquat Sci. 2003;60(12):1552–74.
Article
Google Scholar
Lennon RE. Feeding mechanism of the sea lamprey and its effect on host fishes. Fish Bull US Dept Interior. 1954;98:247–93.
Google Scholar
Cline TJ, Kitchell JF, Bennington V, Mckinley GA, Moody EK, Weidel BC. Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions and invasive species management. Ecosphere. 2014;5(6):1–13.
Article
Google Scholar
Swink WD. Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies. J Great Lakes Res. 2003;29:307–19.
Article
Google Scholar
Madenjian CP, Chipman BD, Marsden JE. New estimates of lethality of sea lamprey (Petromyzon marinus) attacks on lake trout (Salvelinus namaycush): implications for fisheries management. Can J Fish Aquat Sci. 2008;65(3):535–42.
Article
Google Scholar
Nowicki SM. Healing, classification and hematological assessments of sea lamprey (Petromyzon marinus) wounds on lake trout (Salvelinus namaycush). Northern Michigan University; 2008.
Kinnunen RE, Johnson HE. Impact of sea lamprey parasitism on the blood features and hemopoietic tissues of rainbow trout. In: Technical Report. Ann Arbor: Great Lakes Fishery Commission; 1985.
Google Scholar
Edsall CC, Swink WD. Effects of nonlethal sea lamprey attack on the blood chemistry of lake trout. J Aquat Anim Health. 2001;13(1):51–5.
Article
Google Scholar
Schroeder H, Skelly PJ, Zipfel PF, Losson B, Vanderplasschen A. Subversion of complement by hematophagous parasites. Dev Comp Immunol. 2009;33(1):5–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao R, Pang Y, Li QW. The buccal gland of Lampetra japonica is a source of diverse bioactive proteins. Biochimie. 2012;94(5):1075–9.
Article
CAS
PubMed
Google Scholar
Xiao R, Li QW, Perrett S, He RQ. Characterisation of the fibrinogenolytic properties of the buccal gland secretion from Lampetra japonica. Biochimie. 2007;89(3):383–92.
Article
CAS
PubMed
Google Scholar
Wang JH, Han XX, Yang HS, Lu L, Wu Y, Liu X, Guo RY, Zhang Y, Zhang YQ, Li QW. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie. 2010;92(10):1387–96.
Article
CAS
PubMed
Google Scholar
Sun J, Yu SY, Xue Z, Liu CJ, Wu Y, Liu X, Li QW. Lamprey buccal gland secretory protein-2 (BGSP-2) inhibits human T lymphocyte proliferation. Curr Zool. 2010;56(2):252–8.
CAS
Google Scholar
Chi SP, Xiao R, Li QW, Zhou LW, He RQ, Qi Z. Suppression of neuronal excitability by the secretion of the lamprey (Lampetra japonica) provides a mechanism for its evolutionary stability. Pflug Arch Eur J Phy. 2009;458(3):537–45.
Article
CAS
Google Scholar
Goodier JL. Native lake trout (Salvelinus namaycush) stocks in the Canadian waters of Lake Superior prior to 1988. Can J Fish Aquat Sci. 1981;38:1724–37.
Article
Google Scholar
Moore SA, Bronte CR. Delineation of sympatric morphotypes of lake trout in Lake Superior. T Am Fish Soc. 2001;130(6):1233–40.
Article
Google Scholar
Eschmeyer PH, Phillips AM. Fat content of the flesh of siscowets and lake trout from Lake Superior. T Am Fish Soc. 1965;94:62–74.
Article
Google Scholar
Sitar SP. Assessment of lake trout stocks in Michigan waters of Lake Superior, 1998–2007. In: Fisheries Research Report. vol. in press. Lansing: Michigan Department of Natural Resources; 2016. in press.
Google Scholar
Goetz FW, Sitar S, Rosauer D, Swanson P, Bronte CR, Dickey J, Simchick P. The reproductive biology of lean and siscowet lake trout (Salvelinus namaycush) in southern Lake Superior. Trans Am Fish Soc. 2011;140:1472–91.
Article
Google Scholar
Goetz F, Rosauer D, Sitar S, Goetz G, Simchick C, Roberts S, Johnson R, Murphy C, Bronte CR, MacKenzie S. A genetic basis for the phenotypic differentiation between siscowet and lean lake trout (Salvelinus namaycush). Mol Ecol. 2010;19 Suppl 1:176–96.
Article
PubMed
Google Scholar
Goetz F, Jasonowicz A, Johnson R, Biga P, Fischer G, Sitar S. Physiological differences between lean and siscowet lake trout morphotypes: are these metabolotypes? Can J Fish Aquat Sci. 2014;71(3):427–35.
Article
CAS
Google Scholar
Smith SE, Sitar SP, Goetz FW, Huertas M, Armstrong BM, Murphy CA. Differential physiological response to sea lamprey parasitism between lake trout morphotypes (Salvelinus namaycush) from Lake Superior. 2015. in review.
Google Scholar
Papathanasiou MA, Kerr NCK, Robbins JH, Mcbride OW, Alamo I, Barrett SF, Hickson ID, Fornace AJ. Induction by ionizing-radiation of the Gadd45 gene in cultured human-cells - Lack of mediation by protein kinase C. Mol Cell Biol. 1991;11(2):1009–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fornace AJ, Alamo I, Hollander MC. DNA damage-inducible transcripts in mammalian-cells. Proc Natl Acad Sci U S A. 1988;85(23):8800–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998;95(4):521–30.
Article
CAS
PubMed
Google Scholar
Salerno DM, Tront JS, Hoffman B, Liebermann DA. Gadd45a and Gadd45b modulate innate immune functions of granulocytes and macrophages by differential regulation of p38 and JNK signaling. J Cell Physiol. 2012;227(11):3613–20.
Article
CAS
PubMed
Google Scholar
Liebermann DA, Hoffman B. Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis. 2007;39(3):329–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitz I. Gadd45 proteins in immunity. Adv Exp Med Biol. 2013;793:51–68.
Article
CAS
PubMed
Google Scholar
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell. 2008;135(7):1201–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawahara A, Che YS, Hanaoka R, Takeda H, Dawid IB. Zebrafish GADD45 beta genes are involved in somite segmentation. Proc Natl Acad Sci U S A. 2005;102(2):361–6.
Article
CAS
PubMed
Google Scholar
Hassumani DO. Expression of growth arrest and DNA damage protein 45-alpha (gadd45-alpha) and the CCAAT/enhancer binding protein delta (C/EBP-delta) in fishes exposed to heat and hypoxia. : Portland State University; 2013.
Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365(Pt 3):561–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou J, Bird S, Truckle J, Bols N, Horne M, Secombes C. Identification and expression analysis of an IL-18 homologue and its alternatively spliced form in rainbow trout (Oncorhynchus mykiss). Eur J Biochem. 2004;271(10):1913–23.
Article
CAS
PubMed
Google Scholar
Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 binding protein. Front Immunol. 2013;4:289.
PubMed
PubMed Central
Google Scholar
Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 2004;25(2):75–84.
Article
CAS
PubMed
Google Scholar
Harrison LM. Rhes: a GTP-binding protein integral to striatal physiology and pathology. Cell Mol Neurobiol. 2012;32(6):907–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mealer RG, Murray AJ, Shahani N, Subramaniam S, Snyder SH. Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy. J Biol Chem. 2014;289(6):3547–54.
Article
CAS
PubMed
Google Scholar
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol. 2000;40:581–616.
Article
CAS
Google Scholar
Wang X, Gao K, Wu P, Qin G, Liu T, Guo X. Molecular cloning of a phosphotriesterase-related protein gene in silkworm and its expression analysis in the silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus. Scientific Research (Agricultural Sciences). 2011;2(4):406–12.
CAS
Google Scholar
Cheng CW, Chang LC, Tseng TL, Wu CC, Lin YF, Chen JS. Phosphotriesterase-related protein sensed albuminuria and conferred renal tubular cell activation in membranous nephropathy. J Biomed Sci. 2014;21:32.
Pan Y, Chen H, Siu F, Kilberg MS. Amino acid deprivation and endoplasmic reticulum stress induce expression of multiple activating transcription factor-3 mRNA species that, when overexpressed in HepG2 cells, modulate transcription by the human asparagine synthetase promoter. J Biol Chem. 2003;278(40):38402–12.
Article
CAS
PubMed
Google Scholar
Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U. ATF3 and stress responses. Gene Expr. 1999;7(4–6):321–35.
CAS
PubMed
Google Scholar
Oxenkrug GF. Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci. 2010;47(1):56–63.
PubMed
PubMed Central
Google Scholar
Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol. 2009;41(3):467–71.
Article
CAS
PubMed
Google Scholar
Yuasa HJ, Mizuno K, Ball HJ. Low efficiency IDO2 enzymes are conserved in lower vertebrates, whereas higher efficiency IDO1 enzymes are dispensable. FEBS J. 2015;282(14):2735–45.
Article
CAS
PubMed
Google Scholar
Yuasa HJ, Ball HJ. Efficient tryptophan-catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. J Exp Zool B Mol Dev Evol. 2015;324(2):128–40.
Article
CAS
PubMed
Google Scholar
Ball HJ, Sanchez-Perez A, Weiser S, Austin CJ, Astelbauer F, Miu J, McQuillan JA, Stocker R, Jermiin LS, Hunt NH. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene. 2007;396(1):203–13.
Article
CAS
PubMed
Google Scholar
Pucci L, Perozzi S, Cimadamore F, Orsomando G, Raffaelli N. Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism. FEBS J. 2007;274(3):827–40.
Article
CAS
PubMed
Google Scholar
Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34(3):137–43.
Article
CAS
PubMed
Google Scholar
Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.
Article
CAS
PubMed
Google Scholar
Marancik D, Gao G, Paneru B, Ma H, Hernandez A, Salem M, Yao J, Palti Y, Wiens G: Whole-body transcriptome of selectively bred, resistant-, control-, and susceptible-line rainbow trout following experimental challenge with Flavobacterium psychrophilum. Frontiers in Genetics 2015, 5:doi: 10.3389/fgene.2014.00453.
Makala LH. The role of indoleamine 2, 3 dioxygenase in regulating host immunity to leishmania infection. J Biomed Sci. 2012;19:5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Odani S, Ito N, Hasegawa M, Uchiumi T, Hase S. Identification of L-3-hydroxykynurenine O-sulfate in the buccal gland secretion of the parasitic lamprey Lethenteron japonicum. Amino Acids. 2012;43(6):2505–12.
Article
CAS
PubMed
Google Scholar
Ide T, Shimano H, Yoshikawa T, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Yatoh S, Iizuka Y, Tomita S, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol. 2003;17(7):1255–67.
Article
CAS
PubMed
Google Scholar
Barton BA. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002;42(3):517–25.
Article
CAS
PubMed
Google Scholar
Gilmour KM. Mineralocorticoid receptors and hormones: fishing for answers. Endocrinology. 2005;146(1):44–6.
Article
CAS
PubMed
Google Scholar
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39(4):199–218.
Article
CAS
PubMed
Google Scholar
Bergstedt RA, Swink WD. Seasonal growth and duration of the parasitic life stage of the Landlocked Sea Lamprey (Petromyzon marinus). Can J Fish Aquat Sci. 1995;52(6):1257–64.
Article
Google Scholar
Chomcynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol extraction. Anal Biochem. 1987;162:156–9.
Google Scholar
Chomcynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and protein from cell and tissue samples. Biotechniques. 1993;15:532–7.
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644-U130.
Article
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST plus : architecture and applications. Bmc Bioinformatics. 2009;10:421.
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44(D1):D336–42.
Article
PubMed
Google Scholar
Zhao S, Fernald RD. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol. 2005;12(8):1047–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57(1):289–300.
Google Scholar