Gunter LE, Tuskan GA, Wullschleger SD. Diversity among populations of switchgrass based on RAPD markers. Crop Sci. 1996;36:1017–22.
Article
Google Scholar
Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH. Genetic diversity in switchgrass collections assessed by EST-SSR markers. BioEnergy Res. 2008;1:136–46.
Article
Google Scholar
Porter Jr CL. An analysis of variation between upland and lowland switchgrass, Panicum Virgatum L., in central Oklahoma. Ecology. 1966;47:980–92.
Article
Google Scholar
Stroup JA, Sanderson MA, Muir JP, McFarland MJ, Reed RL. Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress. Bioresour Technol. 2003;86:65–72.
Article
CAS
PubMed
Google Scholar
Bouton JH. Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev. 2007;17:553–8.
Article
CAS
PubMed
Google Scholar
Sykes V, Allen F, Mielenz J, Stewart CN, Jr., Windham M, Hamilton C, Rodriguez M, Jr., Yee K. Reduction of ethanol yield from switchgrass infected with rust caused by Puccinia emaculata. BioEnergy Res. 2015:1-9
Zale J, Freshour L, Agarwal S, Sorochan J, Ownley BH, Gwinn KD, Castlebury LA. First report of rust on switchgrass (Panicum virgatum) caused by Puccinia emaculata in Tennessee. Plant Dis. 2008;92:1710.
Article
Google Scholar
Hirsch RL, TeBeest DO, Bluhm BH, West CP. First report of rust caused by Puccinia emaculata on switchgrass in Arkansas. Plant Dis. 2010;94:381.
Article
Google Scholar
Frazier T, Shen Z, Zhao B, Bush E. First report of Puccinia emaculata infection on switchgrass in Virginia. Plant Dis. 2012;97:424.
Article
Google Scholar
Gilley M, Tomaso-Peterson M, Orquera G, Marek S. First report of rust caused by Puccinia emaculata on cultivated switchgrass in Mississippi. J Miss Acad Sci. 2013;58:197.
Google Scholar
Uppalapati S, Serba D, Ishiga Y, Szabo L, Mittal S, Bhandari H, Bouton J, Mysore K, Saha M. Characterization of the rust fungus, Puccinia emaculata, and evaluation of genetic variability for rust resistance in switchgrass populations. BioEnergy Res. 2013;6:458–68.
Article
Google Scholar
Gustafson DM, Boe A, Jin Y. Genetic variation for Puccinia emaculata infection in switchgrass. Crop Sci. 2003;43:755–9.
Google Scholar
Serba DD, Uppalapati SR, Mukherjee S, Krom N, Tang Y, Mysore KS, Saha MC. Transcriptome profiling of rust resistance in switchgrass using RNA-Seq analysis. Plant Genome 2015;8:2.
Article
Google Scholar
Hammond-Kosack KE, Jones JDG. Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:575–607.
Article
CAS
PubMed
Google Scholar
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis. Plant Cell. 2003;15:809–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DA, Jones J. The role of leucine-rich repeat proteins in plant defences. Adv Bot Res. 1997;24:89–167.
Article
Google Scholar
Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell. 2000;12:2033–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, et al. Diversity in nucleotide binding site–leucine-rich repeat genes in cereals. Genome Res. 2002;12:1871–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu YG, Buss GR, Maroof MA. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci U S A. 1996;93:11751–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999;20:317–32.
Article
CAS
PubMed
Google Scholar
He L, Du C, Covaleda L, Xu Z, Robinson AF, Yu JZ, Kohel RJ, Zhang HB. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). Mol Plant-Microbe Interact. 2004;17:1234–41.
Article
CAS
PubMed
Google Scholar
Monosi B, Wisser RJ, Pennill L, Hulbert SH. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet. 2004;109:1434–47.
Article
CAS
PubMed
Google Scholar
Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G. Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS ONE. 2012;7:e34775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nepal MP, Benson BV. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence. Evol Bioinformatics Online. 2015;11:49–63.
Article
Google Scholar
Li J, Ding J, Zhang W, Zhang Y, Tang P, Chen JQ, Tian D, Yang S. Unique evolutionary pattern of numbers of gramineous NBS-LRR genes. Mol Genet Genomics. 2010;283:427–38.
Article
CAS
PubMed
Google Scholar
Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 2013;76:530–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mun J-H, Yu H-J, Park S, Park B-S. Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Genet Genomics. 2009;282:617–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativusand phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics. 2013;14:1–15.
Article
CAS
Google Scholar
Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ. Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics. 2009;281:609–26.
Article
CAS
PubMed
Google Scholar
Zhu Q, Bennetzen JL, Smith SM. Isolation and diversity analysis of resistance gene homologues from switchgrass. G3 (Bethesda). 2013;3:1031–42.
Article
CAS
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86.
Article
CAS
PubMed
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.
Article
CAS
PubMed
Google Scholar
Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991;252:1162–4.
Article
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012;40:D302–5.
Article
CAS
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–6.
CAS
Google Scholar
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2:953–71.
Article
CAS
PubMed
Google Scholar
Nguyen Ba AN, Pogoutse A, Provart N, Moses AM. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10:202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
PubMed
PubMed Central
Google Scholar
Wheeler TJ, Clements J, Finn RD. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinformatics. 2014;15:7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan S, Wu S. Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genomics. 2012;2012:12.
Article
CAS
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmer NA, Donze-Reiner T, Horvath D, Heng-Moss T, Waters B, Tobias C, Sarath G. Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Funct Integr Genomics. 2015;15:1–16.
Article
CAS
PubMed
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
CAS
PubMed
PubMed Central
Google Scholar
RC T. R: a language and environment for statistical computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2015: Open access available at: http://cran.r-project.org. Accessed Dec 2014.
Porebski S, Bailey LG, Baum B. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report. 1997;15:8–15.
Article
CAS
Google Scholar
Hirotsu N, Murakami N, Kashiwagi T, Ujiie K, Ishimaru K. Protocol: a simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species. Plant Methods. 2010;6:12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A. 2003;100:8024–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front Plant Sci. 2014;5:606.
Article
PubMed
PubMed Central
Google Scholar
Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics. 2004;271:402–15.
Article
CAS
PubMed
Google Scholar
Opanowicz M, Vain P, Draper J, Parker D, Doonan JH. Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci. 2008;13:172–7.
Article
CAS
PubMed
Google Scholar
McHale L, Tan X, Koehl P, Michelmore RW. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 2006;7:212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature. 2004;428:764–7.
Article
CAS
PubMed
Google Scholar
Century KS, Lagman RA, Adkisson M, Morlan J, Tobias R, Schwartz K, Smith A, Love J, Ronald PC, Whalen MC. Developmental control of Xa21-mediated disease resistance in rice. Plant J. 1999;20:231–6.
Article
CAS
PubMed
Google Scholar
Cao Y, Ding X, Cai M, Zhao J, Lin Y, Li X, Xu C, Wang S. The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics. 2007;177:523–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh S, Chand S, Singh NK, Sharma TR. Genome-wide distribution, organisation and functional characterization of disease resistance and defence response genes across rice species. PLoS ONE. 2015;10:e0125964.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marone D, Russo M, Laidò G, De Leonardis A, Mastrangelo A. Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci. 2013;14:7302–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, et al. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site--leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics. 2009;182:1303–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarris Panagiotis F, Duxbury Z, Huh Sung U, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet Simon B, et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell. 2015;161:1089–100.
Article
CAS
PubMed
Google Scholar
Sun L, Ren H, Liu R, Li B, Wu T, Sun F, Liu H, Wang X, Dong H. An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant-Microbe Interact. 2010;23:1470–85.
Article
CAS
PubMed
Google Scholar
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science. 2008;321:952–6.
Article
CAS
PubMed
Google Scholar
La Camera S, L’Haridon F, Astier J, Zander M, Abou-Mansour E, Page G, Thurow C, Wendehenne D, Gatz C, Metraux JP, et al. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants. Plant J. 2011;68:507–19.
Article
CAS
PubMed
Google Scholar
Wang H, Wijeratne A, Wijeratne S, Lee S, Taylor C, St Martin S, McHale L, Dorrance A. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis. BMC Genomics. 2012;13:428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A, et al. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant-Microbe Interact. 2004;17:749–62.
Article
CAS
PubMed
Google Scholar
Xiang Y, Song M, Wei Z, Tong J, Zhang L, Xiao L, Ma Z, Wang Y. A jacalin-related lectin-like gene in wheat is a component of the plant defence system. J Exp Bot. 2011;62:5471–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Carrington JC. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci U S A. 2000;97:489–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laurent F, Labesse G, de Wit P. Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochem Biophys Res Commun. 2000;270:286–92.
Article
CAS
PubMed
Google Scholar
Chiasson D, Ekengren S, Martin G, Dobney S, Snedden W. Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. tomato. Plant Mol Biol. 2005;58:887–97.
Article
CAS
PubMed
Google Scholar
Takabatake R, Karita E, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y. Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant Cell Physiol. 2007;48:414–23.
Article
CAS
PubMed
Google Scholar
Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2:202–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biruma M, Martin T, Fridborg I, Okori P, Dixelius C. Two loci in sorghum with NB-LRR encoding genes confer resistance to Colletotrichum sublineolum. Theor Appl Genet. 2012;124:1005–15.
Article
CAS
PubMed
Google Scholar
Essers L, Adolphs RH, Kunze R. A highly conserved domain of the maize Activator transposase is involved in dimerization. Plant Cell. 2000;12:211–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee S-H. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 2012;12:139.
Article
CAS
PubMed
PubMed Central
Google Scholar