Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol. 2009;25:21–44.
Article
CAS
PubMed
Google Scholar
Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PG. Elucidation of the small RNA component of the transcriptome. Science. 2005;309:1567–9.
Article
CAS
PubMed
Google Scholar
Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006;20(7):759–71.
Article
CAS
PubMed
Google Scholar
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005;138(4):2145–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA. Identification and characterization of new plant microRNAs using EST analysis. Cell Res. 2005;15(15):336–60.
Article
PubMed
Google Scholar
Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM. The evolution and diversification of dicers in plants. FEBS Lett. 2006;580(10):2442–50.
Article
CAS
PubMed
Google Scholar
Xie M, Zhang S, Yu B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci. 2015;72(1):87–99.
Article
CAS
PubMed
Google Scholar
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136(4):669–87.
Article
CAS
PubMed
Google Scholar
Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A. 2005;102(33):11928–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duraisamy GS, Mishra AK, Jakse J, Matousek M. Computational Prediction, Target Identification and Experimental Validation of miRNAs from Expressed Sequence Tags in Cannabis sativa. L. Res Rev: J Bot Sci. 2015;4(2):32–42.
Google Scholar
Wang TZ, Chen L, Zhao MG, Tian QY, Zhang WH. Identification of drought-responsive microRNAs and their targets in Medicago truncatula by genome-wide high-throughput sequencing and degradome analysis. BMC Genomics. 2011;12:367.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot. 2009;103:29–38.
Article
CAS
PubMed
Google Scholar
Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta. 2008;1779:743–8.
Article
CAS
PubMed
Google Scholar
Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW. Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot. 2010;61(1):165–77.
Article
CAS
PubMed
Google Scholar
Zhao M, Ding H, Zhu JK, Zhang F, Li WX. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol. 2011;190(4):906–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valdes-Lopez O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G. MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol. 2010;187(3):805–18.
Article
CAS
PubMed
Google Scholar
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.
Article
CAS
PubMed
Google Scholar
Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in and plants. Plant Cell. 2005;17(6):1658–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008;18(10):1602–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motameny S, Wolters S, Nürnberg P, Schumacher B. Next Generation Sequencing of miRNAs-Strategies, Resources and Methods. Genes (Basel). 2010;1(1):70–84.
CAS
Google Scholar
Jagadeeswaran G, Zheng Y, Sumathipala N, Jiang H, Arrese EL, Soulages JL, Zhang W, Sunkar R. Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics. 2010;20:11–52.
Google Scholar
Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A Genome-Wide Characterization of MicroRNA Genes in Maize. PLoS Genet. 2009;5(11):e1000716.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lakhotia N, Joshi G, Bhardwaj AR, Katiyar-Agarwal S, Agarwal M, Jagannath A, Goel S, Kumar A. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biol. 2014;14:6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S. Identification and Characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing. PLoS ONE. 2011;6(11):e27530.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv S, Nie X, Wang L, Du X, Biradar SS, Jia X, Weining S. Identification and characterization of microRNAs from Barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci. 2012;13:2973–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shamimuzzaman M, Vodkin L. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics. 2012;13(16):310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Li L, Liu L, Li H, Zhang Y, Yao Y, Ni Z, Gao J. High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Genet Genomics. 2012;287(7):555–63.
Article
CAS
PubMed
Google Scholar
Jia L, Zhang D, Qi X, Ma B, Xiang Z, He N. Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing. PLoS ONE. 2014;9(8):e104409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao J, Yin F, Liu M, Luo M, Qin C, Yang A, Yang S, Zhang Z, Shen Y, Lin H, Pan G. Identification and characterization of tobacco microRNA transcriptome using high-throughput sequencing. Plant Biol. 2015;17(3):591–8.
Article
CAS
PubMed
Google Scholar
Matousek J, Vrba L, Skopek J, Orctova L, Pesina K, Heyerick A, Baulcombe D, De Keukeleire D. Sequence analysis of a “true” chalcone synthase (chs_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems. J Agric Food Chem. 2006;54(20):7606–15.
Article
CAS
PubMed
Google Scholar
Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod. 2009;72(6):1220–30.
Article
CAS
PubMed
Google Scholar
Diener TO. Biological properties. In: Diener TO, editor. The Viroids. New York: Plenum Press; 1987. p. 9–35.
Chapter
Google Scholar
Daròs JA, Flores R. Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proc Natl Acad Sci U S A. 2004;101(17):6792–7.
Article
PubMed
PubMed Central
Google Scholar
Sano T, Barba M, Li SF, Hadidi A. Viroids and RNA silencing: mechanism, role in viroid pathogenicity and development of viroid-resistant plants. GM Crops. 2010;1(12):80–6.
PubMed
Google Scholar
Wang Y, Shibuya M, Taneda A, Kurauchi T, Senda M, Owens RA, Sano T. Accumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology. 2011;413(1):72–83.
Article
CAS
PubMed
Google Scholar
Markarian N, Li HW, Ding SW, Semancik JS. RNA silencing as related to viroid induced symptom expression. Arch Virol. 2004;149(2):397–406.
Article
CAS
PubMed
Google Scholar
Martinez G, Donaire L, Llave C, Pallás V, Gómez G. High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol Plant Pathol. 2010;11(3):347–59.
Article
CAS
PubMed
Google Scholar
Jakse J, Radisek S, Pokorn T, Matousek J, Javornik B. Deep-sequencing revealed Citrus bark cracking viroid (CBCVd) as a highly aggressive pathogen on hop. Plant Pathol. 2015;64(4):831–42.
Article
CAS
Google Scholar
Hammann C, Steger G. Viroid-specific small RNA in plant disease. RNA Biol. 2012;9(6):809–19.
Article
CAS
PubMed
Google Scholar
Diermann N, Matoušek J, Junge M, Riesner D, Steger G. Characterization of plant miRNAs and small RNAs derived from Potato spindle tuber viroid (PSTVd) in infected tomato. Biol Chem. 2010;391(12):1379–90.
Article
CAS
PubMed
Google Scholar
Blankenberg D, Gordon A, Kuster GV, Coraor N, Taylor J, Nekrutenko A, Galaxy Team. Manipulation of FASTQ data with Galaxy. Bioinformatics. 2010;26(14):1783–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lei J, Sun Y. miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics. 2014;30(19):2837–9.
Article
CAS
PubMed
Google Scholar
Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK. Criteria for annotation of plant microRNAs. Plant Cell. 2008;20(12):3186–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Natsume S, Takagi H, Shiraishi A, Murata J, Toyonaga H, Patzak J, Takagi M, Yaegashi H, Uemura A, Mitsuoka C, Yoshida K, Krofta K, Satake H, Terauchi R, Ono E. The draft genome of hop (Humulus lupulus), an essence for brewing. Plant Cell Physiol. 2015;56(3):428–41.
Article
CAS
PubMed
Google Scholar
Mishra AK, Duraisamy GS, Matoušek J. Discovering microRNAs and their targets in Plants. Crit Rev Plant Sci. 2015;34(6):554–72.
Article
CAS
Google Scholar
Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011;39:W155–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kantar M, Unver T, Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics. 2010;10(4):493–507.
Article
CAS
PubMed
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–95.
CAS
PubMed
Google Scholar
Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. 2011;15(15):1–5.
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.
Article
CAS
PubMed
Google Scholar
Bologna NG, Mateos JL, Bresso EG, Palatnik JF. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J. 2009;28(23):3646–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25(7):2383–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF, Mantovani R. The promiscuous life of plant nuclear factor transcription factors. Plant Cell. 2012;24(12):4777–92.
Article
PubMed
PubMed Central
Google Scholar
Matoušek J, Kocábek T, Patzak J, Füssy Z, Procházková J, Heyerick A. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.). BMC Plant Biol. 2012;12(20):27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu CG, Koroleva OA, Farrar JF, Gallagher J, Pollock CJ, Tomos AD. Rubisco small subunit, chlorophyll a/b-binding protein and sucrose: fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light. Plant Physiol. 2002;130:1335–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature. 2001;411:826–33.
Article
CAS
PubMed
Google Scholar
Erickson FL, Dinesh-Kumar SP, Holzberg S, Ustach CV, Dutton M, Handley V, Corr C, Baker BJ. Interactions between tobacco mosaic virus and the tobacco N gene. Philos Trans R Soc Lond B Biol Sci. 1999;354:653–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu QB, Jiang Y, Chong K, Yang ZN. AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J. 2009;59:1011–23.
Article
CAS
PubMed
Google Scholar
Moon YH, Chen L, Pan RL, Chang HS, Zhu T, Maffeo DM, Sung ZR. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell. 2003;15:681–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider S. Inositol transport proteins. FEBS Lett. 2015;589:1049–58.
Article
CAS
PubMed
Google Scholar
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell. 2010;141:497–508.
Article
CAS
PubMed
Google Scholar
Aldridge C, Maple J, Moller SG. The molecular biology of plastid division in higher plants. J Exp Bot. 2005;56:1061–77.
Article
CAS
PubMed
Google Scholar
Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell. 2002;14:1359–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minoia S, Carbonell A, Di Serio F, Gisel A, Carrington JC, Navarro B, Flores R. Specific ARGONAUTES bind selectively small RNAs derived from Potato spindle tuber viroid and attenuate viroid accumulation in vivo. J Virol. 2014;88(20):11933–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zavallo D, Debat HJ, Conti G, Manacorda CA, Rodriguez MC, Asurmendi S. Differential mRNA accumulation upon early Arabidopsis thaliana infection with ORMV and TMV-Cg is associated with distinct endogenous small RNAs level. PLoS ONE. 2015;10(8):e0134719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22(5):268–80.
Article
CAS
PubMed
Google Scholar
Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol. 2004;14(13):1214–20.
Article
CAS
PubMed
Google Scholar
Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci. 2006;63(2):246–54.
Article
CAS
PubMed
Google Scholar
Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants. Plant Cell. 2007;19(6):1750–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R. Transcriptome-wide identification of microRNA targets in rice. Plant J. 2010;62(5):742–59.
Article
CAS
PubMed
Google Scholar
Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A. 2010;107(34):15269–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu YD, Gan QH, Chi XY, Qin S. Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep. 2008;27(10):1571–9.
Article
CAS
PubMed
Google Scholar
Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted Squamosa promoter binding-like transcription factors. Plant Cell. 2012;24(8):3320–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013;199(3):639–44.
Article
CAS
PubMed
Google Scholar
Curaba J, Singh MB, Bhalla PL. miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot. 2014;65(6):1425–38.
Article
CAS
PubMed
Google Scholar
Hirsch S, Oldroyd GE. GRAS-domain transcription factors that regulate plant development. Plant Signal Behav. 2009;4(8):698–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z, Wang XF, Zhang DP. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol Biol. 2015;88(4–5):369–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang W, Li C, Liu F, Jiang H, Li S, Sun J, Wu X, Li C. The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res. 2009;19(3):307–16.
Article
CAS
PubMed
Google Scholar