Lyon GD, Newton AC. Do resistance elicitors offer new opportunities in integrated disease control strategies? Plant Pathol. 1997;46(5):636–41.
Article
Google Scholar
Walters DR, Ratsep J, Havis ND. Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot. 2013;64(5):1263–80.
Article
CAS
PubMed
Google Scholar
Walters D, Newton A, Lyon G. Induced resistance for plant defence: a sustainable approach to crop protection. Oxford: Blackwell Publishing; 2007.
Book
Google Scholar
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9.
Article
CAS
PubMed
Google Scholar
Walters DR, Havis ND, Sablou C, Walsh DJ. Possible trade-off associated with the use of a combination of resistance elicitors. Physiol Mol Plant Pathol. 2011;75(4):188–92.
Article
CAS
Google Scholar
Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 2005;23(4):283–333.
Article
CAS
PubMed
Google Scholar
Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, Zou T, Lu G. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics. 2015;16:386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyon G. Agents that can elicit induced resistance. In: Walters D, Newton A, Lyon G, editors. Induced resistance for plant defence: a sustainable approach to crop protection. Oxford: Blackwell Publishing; 2007. p. 9–29.
Chapter
Google Scholar
Raynal G, Ravise A, Bompeix G. Action of aluminium tris-O-ethylphosphonate on pathogenicity of Plasmopara viticola and on stimulation of defence reactions of grapevine. Ann Phytopathol. 1980;12(3):163–75.
CAS
Google Scholar
Dong X. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol. 1998;1(4):316–23.
Article
CAS
PubMed
Google Scholar
Pieterse CMJ, van Loon LC. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 1999;4(2):52–8.
Article
PubMed
Google Scholar
Gao Q-M, Zhu S, Kachroo P, Kachroo A. Signal regulators of systemic acquired resistance. Front Plant Sci. 2015;6:228.
PubMed
PubMed Central
Google Scholar
Herrera-Vasquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci. 2015;6:171.
Article
PubMed
PubMed Central
Google Scholar
Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol. 2002;5(4):325–31.
Article
CAS
PubMed
Google Scholar
Caarls L, Pieterse CMJ, Van Wees SCM. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci. 2015;6:170.
Article
PubMed
PubMed Central
Google Scholar
Daniel R, Guest D. Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiol Mol Plant Pathol. 2006;67(3/5):194–201.
Google Scholar
Iriti M, Faoro F. Benzothiadiazole (BTH) induces cell-death independant resistance in Phaseolus vulgaris against Uromyces appendicalatus. J Phytopathol. 2003;151:171–80.
Article
CAS
Google Scholar
Bompeix G, Fettouche F, Saindrenan P. Mode of action of phosethyl Al. Phytiatrie-Phytopharmacie. 1981;30(4):257–72.
CAS
Google Scholar
Ahmad JN, Renaudin J, Eveillard S. Expression of defence genes in stolbur phytoplasma infected tomatoes, and effect of defence stimulators on disease development. Eur J Plant Pathol. 2014;139(1):39–51.
Article
CAS
Google Scholar
Araujo L, Silva Bispo WM, Rios VS, Fernandes SA, Rodrigues FA. Induction of the phenylpropanoid pathway by acibenzolar-S-Methyl and potassium phosphite increases mango resistance to ceratocystis fimbriata infection. Plant Dis. 2015;99(4):447–59.
Article
CAS
Google Scholar
Barilli E, Rubiales D, Amalfitano C, Evidente A, Prats E. BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta. 2015;242(5):1095–106.
Article
CAS
PubMed
Google Scholar
Gordy JW, Leonard BR, Blouin D, Davis JA, Stout MJ. Comparative effectiveness of potential elicitors of plant resistance against spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in four crop plants. Plos One. 2015;10(9):e0136689.
Article
PubMed
PubMed Central
Google Scholar
Wang K, Liao Y, Cao S, Di H, Zheng Y. Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved. Postharvest Biol Technol. 2015;102:51–60.
Article
CAS
Google Scholar
Bressan A, Purcell AH. Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Dis. 2005;89(10):1121–4.
Article
CAS
Google Scholar
Brisset MN, Cesbron S, Thomson SV, Paulin JP. Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight. Eur J Plant Pathol. 2000;106(6):529–36.
Article
CAS
Google Scholar
Dufour MC, Lambert C, Bouscaut J, Merillon JM, Corio-Costet MF. Benzothiadiazole-primed defence responses and enhanced differential expression of defence genes in Vitis vinifera infected with biotrophic pathogens Erysiphe necator and Plasmopara viticola. Plant Pathol. 2013;62(2):370–82.
Article
CAS
Google Scholar
Dufour M-C, Corio-Costet M-F. Variability in the sensitivity of biotrophic grapevine pathogens (Erysiphe necator and Plasmopara viticola) to acibenzolar-S methyl and two phosphonates. Eur J Plant Pathol. 2013;136(2):247–59.
Article
CAS
Google Scholar
Siegrist L, Glenewinkel D, Kolle C, Schmidtke M. Chemically induced resistance in green bean against bacterial and fungal pathogens. Z Pflanzenkrankh Pflanzenschutz. 1997;104(6):599–610.
CAS
Google Scholar
Sticher L, Mauch-Mani B, Metraux JP. Systemic acquired resistance. Annu Rev Phytopathol. 1997;35:325–70.
Article
Google Scholar
Tally A, Oostendorp M, Lawton K, Staub T, Bassi B. Commercial development of elicitors of induced resistance to pathogens. In: Agrawal A, Tuzun S, Bent E, editors. Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. American Pthytopatological Society (St Paul MN: APS Press); 1999. p. 357–369.
Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Gut Rella M, Meier B, Dincher S, Staub T, Uknes S, et al. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 1996;10(1):61–70.
Article
CAS
Google Scholar
Fenn ME, Coffey MD. Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorous acid. Phytopathology. 1984;74(5):934–6.
Article
Google Scholar
Massoud K, Barchietto T, Le Rudulier T, Pallandre L, Didierlaurent L, Garmier M, Ambard-Bretteville F, Seng J-M, Saindrenan P. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiol. 2012;159(1):286–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson TJ, Burgess T, Colquhoun I, Hardy GES. Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathol. 2000;49(1):147–54.
Article
CAS
Google Scholar
Nemestothy GS, Guest DI. Phytoalexin accumulation, phenylalanine ammonia lyase activity and ethylene biosynthesis in fosetyl-Al treated resistant and susceptible tobacco cultivars infected with Phytophthora nicotianae var. nicotianae. Physiol Mol Plant Pathol. 1990;37(3):207–19.
Article
CAS
Google Scholar
Saindrenan P, Barchietto T, Avelino J, Bompeix G. Effects of phosphite on phytoalexin accumulation in leaves of cowpea infected with Phytophthora-cryptogea. Physiol Mol Plant Pathol. 1988;32(3):425–35.
Article
CAS
Google Scholar
Saindrenan P, Barchietto T, Bompeix G. Effects of phosphonate on the elicitor activity of culture filtrates of Phytophthora-cryptogea in Vigna-unguiculata. Plant Sci. 1990;67(2):245–51.
Article
CAS
Google Scholar
de Bernonville TD, Marolleau B, Staub J, Gaucher M, Brisset M-N. Using molecular tools to decipher the complex world of plant resistance inducers: an apple case study. J Agric Food Chem. 2014;62(47):11403–11.
Article
Google Scholar
Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M, Zadra C, Lovato A, Pezzotti M, Delledonne M, Polverari A. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics. 2010;11:117.
Article
PubMed
PubMed Central
Google Scholar
Devonshire AS, Sanders R, Wilkes TM, Taylor MS, Foy CA, Huggett JF. Application of next generation qPCR and sequencing platforms to mRNA biomarker analysis. Methods. 2013;59(1):89–100.
Article
CAS
PubMed
Google Scholar
Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463–7.
Article
CAS
PubMed
Google Scholar
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003;31(13):3497–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(1):1.
Article
Google Scholar
Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma. 2008;2008:420747.
Article
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science. 2002;298(5593):580–4.
Article
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034-RESEARCH0034.
Simko I, Piepho H-P. The area under the disease progress stairs: calculation, advantage, and application. Phytopathology. 2012;102(4):381–9.
Article
PubMed
Google Scholar
Giannakis C, Bucheli CS, Skene KGM, Robinson SP, Scott NS. Chitinase and b 1,3-glucanase in grapevine leaves: a possible defence against powdery mildew infection. Aust J Grape Wine Res. 1998;4:14–22.
Article
CAS
Google Scholar
Kortekamp A. Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiol Biochem. 2006;44(1):58–67.
Article
CAS
PubMed
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.
Article
CAS
PubMed
Google Scholar
Reid KE, Olsson N, Schlosser J, Peng F, Lund ST. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development - art. no. 27. BMC Plant Biol. 2006;6:27.
Article
PubMed
PubMed Central
Google Scholar
Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH. Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol. 2010;51(10):1694–706.
Article
CAS
PubMed
Google Scholar
Robinson SP, Jacobs AK, Dry IB. A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 1997;114(3):771–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol Biochem. 2008;46(11):941–50.
Article
CAS
PubMed
Google Scholar
Tornero P, Conejero V, Vera P. Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: Similarity of functional domains to subtilisin-like endoproteases. Proc Natl Acad Sci U S A. 1996;93(13):6332–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponstein AS, Bresvloemans SA, Selabuurlage MB, Vandenelzen PJM, Melchers LS, Cornelissen BJC. A novel pathogen-inducible and wound-inducible tobacco (Nitoctiana tabacum) protein with antifungal activity. Plant Physiol. 1994;104(1):109–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu GH. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 2003;133(1):170–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F, Merdinoglu D, Hugueney P. A stress-inducible resveratrol O-Methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol. 2008;148(3):1630–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bezier A, Lambert B, Baillieul F. Cloning of a grapevine Botrytis-responsive gene that has homology to the tobacco hypersensitivity-related hsr203J. J Exp Bot. 2002;53(378):2279–80.
Article
CAS
PubMed
Google Scholar
Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol. 2010;10(1):1.
Article
CAS
Google Scholar
Laudert D, Pfannschmidt U, Lottspeich F, HollanderCzytko H, Weiler EW. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol. 1996;31(2):323–35.
Article
CAS
PubMed
Google Scholar
Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet MF, Regad F, Cailleteau B, Hamdi S, et al. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot. 2007;58(8):1999–2010.
Article
CAS
PubMed
Google Scholar