Wales PW. Surgical therapy for short bowel syndrome. Pediatr Surg Int. 2004;20(9):647–57.
Article
PubMed
Google Scholar
Schalamon J, Mayr JM, Hollwarth ME. Mortality and economics in short bowel syndrome. Best Pract Res Clin Gastroenterol. 2003;17(6):931–42.
Article
CAS
PubMed
Google Scholar
McMellen ME, Wakeman D, Longshore SW, McDuffie LA, Warner BW. Growth factors: possible roles for clinical management of the short bowel syndrome. Semin Pediatr Surg. 2010;19(1):35–43.
Article
PubMed
PubMed Central
Google Scholar
Aprahamian CJ, Chen M, Yang Y, Lorenz RG, Harmon CM. Two-hit rat model of short bowel syndrome and sepsis: independent of total parenteral nutrition, short bowel syndrome is proinflammatory and injurious to the liver. J Pediatr Surg. 2007;42(6):992–7.
Article
PubMed
Google Scholar
Naini BV, Lassman CR. Total parenteral nutrition therapy and liver injury: a histopathologic study with clinical correlation. Hum Pathol. 2012;43(6):826–33.
Article
CAS
PubMed
Google Scholar
Nousia-Arvanitakis S, Angelopoulou-Sakadami N, Metroliou K. Complications associated with total parenteral nutrition in infants with short bowel syndrome. Hepatogastroenterology. 1992;39(2):169–72.
CAS
PubMed
Google Scholar
Schall KA, Holoyda KA, Grant CN, Levin DE, Torres ER, Maxwell A, Pollack HA, Moats RA, Frey MR, Darehzereshki A, et al. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration. Am J Physiol Gastrointest Liver Physiol. 2015;309(3):G135–145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kralj JG, Salit ML. Characterization of in vitro transcription amplification linearity and variability in the low copy number regime using External RNA Control Consortium (ERCC) spike-ins. Anal Bioanal Chem. 2013;405(1):315–20.
Article
CAS
PubMed
Google Scholar
Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT. Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics. 2013;29(5):656–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
FastQC [http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc]
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Gentleman R, Carey V. Visualization and annotation of genomic experiments. NY: Springer; 2003.
Book
Google Scholar
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32(9):896–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23(2):257–8.
Article
CAS
PubMed
Google Scholar
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-Seq data. BMC Bioinf. 2011;12:480.
Article
CAS
Google Scholar
Bharadwaj S, Tandon P, Meka K, Rivas JM, Jevenn A, Kuo NT, Steiger E. Intestinal failure: adaptation, rehabilitation, and transplantation. J Clin Gastroenterol. 2016;50(5):366–72.
PubMed
Google Scholar
Kim WR, Stock PG, Smith JM, Heimbach JK, Skeans MA, Edwards EB, Harper AM, Snyder JJ, Israni AK, Kasiske BL. OPTN/SRTR 2011 annual data report: liver. Am J Transplant. 2013;13(1):73–102.
Article
PubMed
Google Scholar
Taylor JA, Martin CA, Nair R, Guo J, Erwin CR, Warner BW. Lessons learned: optimization of a murine small bowel resection model. J Pediatr Surg. 2008;43(6):1018–24.
Article
PubMed
PubMed Central
Google Scholar
McDuffie LA, Bucher BT, Erwin CR, Wakeman D, White FV, Warner BW. Intestinal adaptation after small bowel resection in human infants. J Pediatr Surg. 2011;46(6):1045–51.
Article
PubMed
PubMed Central
Google Scholar
Benhamou PH, Canarelli JP, Richard S, Cordonnier C, Postel JP, Grenier E, Leke A, Dupont C. Human recombinant growth hormone increases small bowel lengthening after massive small bowel resection in piglets. J Pediatr Surg. 1997;32(9):1332–6.
Article
CAS
PubMed
Google Scholar
de Segura IA G, Aguilera MJ, Codesal J, Codoceo R, De-Miguel E. Comparative effects of growth hormone in large and small bowel resection in the rat. J Surg Res. 1996;62(1):5–10.
Article
Google Scholar
Lemmey AB, Martin AA, Read LC, Tomas FM, Owens PC, Ballard FJ. IGF-I and the truncated analogue des-(1–3) IGF-I enhance growth in rats after gut resection. Am J Physiol. 1991;260(2 Pt 1):E213–219.
CAS
PubMed
Google Scholar
Martin GR, Wallace LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2004;286(6):G964–972.
Article
CAS
PubMed
Google Scholar
O’Loughlin E, Winter M, Shun A, Hardin JA, Gall DG. Structural and functional adaptation following jejunal resection in rabbits: effect of epidermal growth factor. Gastroenterology. 1994;107(1):87–93.
Article
PubMed
Google Scholar
Shulman DI, Hu CS, Duckett G, Lavallee-Grey M. Effects of short-term growth hormone therapy in rats undergoing 75% small intestinal resection. J Pediatr Gastroenterol Nutr. 1992;14(1):3–11.
Article
CAS
PubMed
Google Scholar
Vanderhoof JA, McCusker RH, Clark R, Mohammadpour H, Blackwood DJ, Harty RF, Park JH. Truncated and native insulinlike growth factor I enhance mucosal adaptation after jejunoileal resection. Gastroenterology. 1992;102(6):1949–56.
Article
CAS
PubMed
Google Scholar
Wallis K, Walters JR, Gabe S. Short bowel syndrome: the role of GLP-2 on improving outcome. Curr Opin Clin Nutr Metab Care. 2009;12(5):526–32.
Article
CAS
PubMed
Google Scholar
Sun RC, Diaz-Miron JL, Choi PM, Sommovilla J, Guo J, Erwin CR, Warner BW. Both epidermal growth factor and insulin-like growth factor receptors are dispensable for structural intestinal adaptation. J Pediatr Surg. 2015;50(6):943–7.
Article
PubMed
PubMed Central
Google Scholar
Feng Y, Barrett M, Hou Y, Yoon HK, Ochi T, Teitelbaum DH. Homeostasis alteration within small intestinal mucosa after acute enteral refeeding in total parenteral nutrition mouse model. Am J Physiol Gastrointest Liver Physiol. 2016;310(4):G273–284.
Article
PubMed
Google Scholar
Beck PL, Rosenberg IM, Xavier RJ, Koh T, Wong JF, Podolsky DK. Transforming growth factor-beta mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am J Pathol. 2003;162(2):597–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko TC, Sheng HM, Reisman D, Thompson EA, Beauchamp RD. Transforming growth factor-beta 1 inhibits cyclin D1 expression in intestinal epithelial cells. Oncogene. 1995;10(1):177–84.
CAS
PubMed
Google Scholar
Das LM, Torres-Castillo MD, Gill T, Levine AD. TGF-beta conditions intestinal T cells to express increased levels of miR-155, associated with down-regulation of IL-2 and itk mRNA. Mucosal Immunol. 2013;6(1):167–76.
Article
CAS
PubMed
Google Scholar
Romagnani S. Th1/Th2 cells. Inflamm Bowel Dis. 1999;5(4):285–94.
Article
CAS
PubMed
Google Scholar
Monteleone G, Holloway J, Salvati VM, Pender SL, Fairclough PD, Croft N, MacDonald TT. Activated STAT4 and a functional role for IL-12 in human Peyer’s patches. J Immunol. 2003;170(1):300–7.
Article
CAS
PubMed
Google Scholar
Biber JL, Jabbour S, Parihar R, Dierksheide J, Hu Y, Baumann H, Bouchard P, Caligiuri MA, Carson W. Administration of two macrophage-derived interferon-gamma-inducing factors (IL-12 and IL-15) induces a lethal systemic inflammatory response in mice that is dependent on natural killer cells but does not require interferon-gamma. Cell Immunol. 2002;216(1–2):31–42.
Article
CAS
PubMed
Google Scholar
Godshall CJ, Lentsch AB, Peyton JC, Scott MJ, Cheadle WG. STAT4 is required for antibacterial defense but enhances mortality during polymicrobial sepsis. Clin Diagn Lab Immunol. 2001;8(6):1044–8.
CAS
PubMed
PubMed Central
Google Scholar
Ralls MW, Demehri FR, Feng Y, Woods Ignatoski KM, Teitelbaum DH. Enteral nutrient deprivation in patients leads to a loss of intestinal epithelial barrier function. Surgery. 2015;157(4):732–42.
Article
PubMed
PubMed Central
Google Scholar
Sukhotnik I, Haj B, Pollak Y, Dorfman T, Bejar J, Matter I. Effect of bowel resection on TLR signaling during intestinal adaptation in a rat model. Surg Endosc. 2016;30:4416–24.
Article
PubMed
Google Scholar
Kuhn KA, Manieri NA, Liu TC, Stappenbeck TS. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS One. 2014;9(12):e114195.
Article
PubMed
PubMed Central
Google Scholar
Sun L, Ye RD. Serum amyloid A1: Structure, function and gene polymorphism. Gene. 2016;583(1):48–57.
Article
CAS
PubMed
Google Scholar
Hasegawa M, Yada S, Liu MZ, Kamada N, Munoz-Planillo R, Do N, Nunez G, Inohara N. Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity. 2014;41(4):620–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puder M, Valim C, Meisel JA, Le HD, de Meijer VE, Robinson EM, Zhou J, Duggan C, Gura KM. Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann Surg. 2009;250(3):395–402.
PubMed
PubMed Central
Google Scholar
Kliewer SA, Mangelsdorf DJ. Bile Acids as Hormones: The FXR-FGF15/19 Pathway. Dig Dis. 2015;33(3):327–31.
Article
PubMed
PubMed Central
Google Scholar
Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143(5):1741–7.
Article
CAS
PubMed
Google Scholar
Mutanen A, Heikkila P, Lohi J, Raivio T, Jalanko H, Pakarinen MP. Serum FGF21 increases with hepatic fat accumulation in pediatric onset intestinal failure. J Hepatol. 2014;60(1):183–90.
Article
CAS
PubMed
Google Scholar
Wu J, Chen J, Wu W, Shi J, Zhong Y, van Tol EA, Tang Q, Cai W. Enteral supplementation of bovine lactoferrin improves gut barrier function in rats after massive bowel resection. Br J Nutr. 2014;112(4):486–92.
Article
CAS
PubMed
Google Scholar