Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One. 2012;7(6), e38544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caragata EP, Dutra HL, Moreira LA: Exploiting intimate relationships: Controlling mosquito-transmitted disease with Wolbachia. Trends Parasitol. 2016
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6(10):741–51.
Article
CAS
PubMed
Google Scholar
McGraw EA, O’Neill SL. Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol. 2013;11(3):181–93.
Article
CAS
PubMed
Google Scholar
Vector-borne diseases. WHO Fact sheets. World Health Organization; 2016.
Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476(7361):454–U107.
Article
CAS
PubMed
Google Scholar
Turelli M, Hoffmann AA. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature. 1991;353(6343):440–2.
Article
CAS
PubMed
Google Scholar
Zhang D, Lees RS, Xi Z, Gilles JR, Bourtzis K. Combining the Sterile Insect Technique with Wolbachia-Based Approaches: II--A Safer Approach to Aedes albopictus Population Suppression Programmes, Designed to Minimize the Consequences of Inadvertent Female Release. PLoS One. 2015;10(8), e0135194.
Article
PubMed
PubMed Central
CAS
Google Scholar
Molloy JC, Sinkins SP. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus. Viruses. 2015;7(8):4624–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A. 2012;109(1):E23–31.
Article
PubMed
Google Scholar
Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL. The relative importance of innate immune priming in Wolbachia-mediated Dengue interference. Plos Pathogens. 2012;8(2):e1002548.
Wong ZS, Brownlie JC, Johnson KN. Oxidative stress correlates with Wolbachia-mediated antiviral protection in Wolbachia-Drosophila associations. Appl Environ Microbiol. 2015;81(9):3001–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hussain M, Lu G, Torres S, Edmonds JH, Kay BH, Khromykh AA, Asgari S. Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J Virol. 2013;87(2):851–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science. 2009;326(5949):134–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, et al. A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell. 2009;139(7):1268–78.
Article
PubMed
Google Scholar
van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O’Neill SL. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 2012;6(11), e1892.
Article
PubMed
PubMed Central
Google Scholar
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, et al. A non-virulent Wolbachia infection blocks dengue transmission and rapidly invades Aedes aegypti populations. Nature. 2011;476:450–5.
Article
CAS
PubMed
Google Scholar
Ye YH, Woolfit M, Rances E, O’Neill SL, McGraw EA. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Negl Trop Dis. 2013;7(8), e2362.
Article
PubMed
PubMed Central
Google Scholar
Dutra HL, Rocha MN, Dias FB, Mansur SB, Caragata EP, Moreira LA. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host Microbe. 2016;19(6):771–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 2013;340(6133):748–51.
Article
CAS
PubMed
Google Scholar
Ferguson NM, Kien DT, Clapham H, Aguas R, Trung VT, Chau TN, Popovici J, Ryan PA, O’Neill SL, McGraw EA, et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med. 2015;7(279):279ra237.
Article
CAS
Google Scholar
Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O’Neill SL. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis. 2014;8(2), e2688.
Article
PubMed
PubMed Central
Google Scholar
Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O’Neill SL. Stability of the wMel Wolbachia Infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis. 2014;8(9), e3115.
Article
PubMed
PubMed Central
Google Scholar
McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O’Neill SL. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323(5910):141–4.
Article
CAS
PubMed
Google Scholar
Xi Z, Khoo CC, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 2005;310(5746):326–8.
Article
CAS
PubMed
Google Scholar
Zug R, Hammerstein P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev Camb Philos Soc. 2014;90(1):89–111.
Article
PubMed
Google Scholar
Zele F, Nicot A, Berthomieu A, Weill M, Duron O, Rivero A. Wolbachia increases susceptibility to Plasmodium infection in a natural system. Proc Biol Sci. 2014;281(1779):20132837.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodson BL, Hughes GL, Paul O, Matacchiero AC, Kramer LD, Rasgon JL. Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl Trop Dis. 2014;8(7), e2965.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hughes GL, Vega-Rodriguez J, Xue P, Rasgon JL. Wolbachia strain wAlbB enhances infection by the rodent malaria parasite Plasmodium berghei in Anopheles gambiae mosquitoes. Appl Environ Microbiol. 2012;78(5):1491–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB. Temperature alters Plasmodium blocking by Wolbachia. Sci Rep. 2014;4:3932.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tason de Camargo M, Krettli AU. Aedes fluviatilis (Lutz), a new experimental host for Plasmodium gallinaceum brumpt. J Parasitol. 1978;64(5):924–5.
Article
CAS
PubMed
Google Scholar
Baton LA, Pacidonio EC, Goncalves DS, Moreira LA. wFlu: characterization and evaluation of a native Wolbachia from the mosquito Aedes fluviatilis as a potential vector control agent. PLoS One. 2013;8(3), e59619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Multini LC, Marrelli MT, Wilke AB. Microsatellite loci cross-species transferability in Aedes fluviatilis (Diptera:Culicidae): a cost-effective approach for population genetics studies. Parasit Vectors. 2015;8:635.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316(5832):1718–23.
Article
CAS
PubMed
Google Scholar
Duplouy A, Iturbe-Ormaetxe I, Beatson SA, Szubert JM, Brownlie JC, McMeniman CJ, McGraw EA, Hurst GD, Charlat S, O’Neill SL, et al. Draft genome sequence of the male-killing Wolbachia strain wBol1 reveals recent horizontal gene transfers from diverse sources. BMC Genomics. 2013;14:20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gill AC, Darby AC, Makepeace BL. Iron necessity: the secret of Wolbachia’s success? PLoS Negl Trop Dis. 2014;8(10), e3224.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zug R, Hammerstein P. Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol. 2015;6:1201.
Article
PubMed
PubMed Central
Google Scholar
Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. Plos Biol. 2004;2(3):327–41.
Article
CAS
Google Scholar
Iturbe-Ormaetxe I, Burke GR, Riegler M, O’Neill SL. Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacteriol. 2005;187(15):5136–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. Plos Biol. 2005;3(4), e121.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sutton ER, Harris SR, Parkhill J, Sinkins SP. Comparative genome analysis of Wolbachia strain wAu. BMC Genomics. 2014;15:928.
Article
PubMed
PubMed Central
CAS
Google Scholar
Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M, Seleznev A, Popovici J, Rances E, Wee BA, Pavlides J, et al. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol. 2013;5(11):2189–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duron O, Boureux A, Echaubard P, Berthomieu A, Berticat C, Fort P, Weill M. Variability and expression of ankyrin domain genes in Wolbachia variants infecting the mosquito Culex pipiens. J Bacteriol. 2007;189(12):4442–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298(5591):129–49.
Article
CAS
PubMed
Google Scholar
Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot. 2012;99(2):248–56.
Article
PubMed
Google Scholar
Bourtzis K, Pettigrew MM, O’Neill SL. Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol. 2000;9(6):635–9.
Article
CAS
PubMed
Google Scholar
Chrostek E, Marialva MS, Yamada R, O’Neill SL, Teixeira L. High anti-viral protection without immune upregulation after interspecies Wolbachia transfer. PLoS One. 2014;9(6), e99025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Warr E, Das S, Dong Y, Dimopoulos G. The Gram-negative bacteria-binding protein gene family: its role in the innate immune system of Anopheles gambiae and in anti-Plasmodium defence. Insect Mol Biol. 2008;17(1):39–51.
Article
CAS
PubMed
Google Scholar
Osta MA, Christophides GK, Kafatos FC. Effects of mosquito genes on Plasmodium development. Science. 2004;303(5666):2030–2.
Article
CAS
PubMed
Google Scholar
Berois M, Romero-Severson J, Severson DW. RNAi knock-downs support roles for the mucin-like (AeIMUC1) gene and short-chain dehydrogenase/reductase (SDR) gene in Aedes aegypti susceptibility to Plasmodium gallinaceum. Med Vet Entomol. 2012;26(1):112–5.
Article
CAS
PubMed
Google Scholar
Groat-Carmona AM, Kain H, Brownell J, Douglass AN, Aly AS, Kappe SH. A Plasmodium α/β-hydrolase modulates the development of invasive stages. Cell Microbiol. 2015;17(12):1848–67.
Article
CAS
PubMed
Google Scholar
Lamour SD, Straschil U, Saric J, Delves MJ. Changes in metabolic phenotypes of Plasmodium falciparum in vitro cultures during gametocyte development. Malar J. 2014;13:468.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol. 2014;30(4):170–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo IC, Ohol YM, Wu P, Morisaki JH, Cox JS, Brown EJ. Role for lysosomal enzyme beta-hexosaminidase in the control of mycobacteria infection. Proc Natl Acad Sci U S A. 2008;105(2):710–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodrigues J, Oliveira GA, Kotsyfakis M, Dixit R, Molina-Cruz A, Jochim R, Barillas-Mury C. An epithelial serine protease, AgESP, is required for Plasmodium invasion in the mosquito Anopheles gambiae. PLoS One. 2012;7(4), e35210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma S, Jadli M, Singh A, Arora K, Malhotra P. A secretory multifunctional serine protease, DegP of Plasmodium falciparum, plays an important role in thermo-oxidative stress, parasite growth and development. FEBS J. 2014;281(6):1679–99.
Article
CAS
PubMed
Google Scholar
Brennan LJ, Haukedal JA, Earle JC, Keddie B, Harris HL. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol Biol. 2012;21(5):510–20.
Article
CAS
PubMed
Google Scholar
Zhang YK, Ding XL, Rong X, Hong XY. How do hosts react to endosymbionts? A new insight into the molecular mechanisms underlying the Wolbachia-host association. Insect Mol Biol. 2015;24(1):1–12.
Article
PubMed
CAS
Google Scholar
Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez G, Barillas-Mury C. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem. 2008;283(6):3217–23.
Article
CAS
PubMed
Google Scholar
Esterhazy D, King MS, Yakovlev G, Hirst J. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry. 2008;47(12):3964–71.
Article
CAS
PubMed
Google Scholar
Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000;25(10):502–8.
Article
CAS
PubMed
Google Scholar
Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 2009;5(4), e1000368.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kosmidis S, Missirlis F, Botella JA, Schneuwly S, Rouault TA, Skoulakis EM. Behavioral decline and premature lethality upon pan-neuronal ferritin overexpression in Drosophila infected with a virulent form of Wolbachia. Front Pharmacol. 2014;5:66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kremer N, Voronin DA, Charif D, Mavingui P, Mollereau B, Vavre F. Wolbachia interferes with ferritin expression and iron metabolism in insects. Plos Pathogens. 2009;5(10), e1000630.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ke H, Sigala PA, Miura K, Morrisey JM, Mather MW, Crowley JR, Henderson JP, Goldberg DE, Long CA, Vaidya AB. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J Biol Chem. 2014;289(50):34827–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ballard JW, Melvin RG. Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in Drosophila. Insect Mol Biol. 2007;16(6):799–802.
Article
CAS
PubMed
Google Scholar
Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. Riboflavin Provisioning Underlies Wolbachia’s Fitness Contribution to Its Insect Host. MBio. 2015;6(6):e01732–01715.
Article
PubMed
PubMed Central
Google Scholar
Caragata EP, Rances E, Hedges LM, Gofton AW, Johnson KN, O’Neill SL, McGraw EA. Dietary cholesterol modulates pathogen blocking by Wolbachia. Plos Pathogens. 2013;9(6), e1003459.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caragata EP, Rances E, O’Neill SL, McGraw EA. Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb Ecol. 2014;67(1):205–18.
Article
CAS
PubMed
Google Scholar
Atyame CM, Labbe P, Lebon C, Weill M, Moretti R, Marini F, Gouagna LC, Calvitti M, Tortosa P. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus. PLoS One. 2016;11(1), e0146834.
Article
PubMed
PubMed Central
CAS
Google Scholar
da Rocha FM, Martins R, Pessoa Costa E, Pacidonio EC, Araujo de Abreu L, da Silva Vaz Jr I, Moreira LA, da Fonseca RN, Logullo C. The modulation of the symbiont/host interaction between Wolbachia pipientis and Aedes fluviatilis embryos by glycogen metabolism. PLoS One. 2014;9(6), e98966.
Article
CAS
Google Scholar
Molloy JC, Sommer U, Viant MR, Sinkins SP. Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells. Appl Environ Microbiol. 2016;82(10):3109–20.
Vollmer J, Schiefer A, Schneider T, Julicher K, Johnston KL, Taylor MJ, Sahl HG, Hoerauf A, Pfarr K. Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and filarial nematodes. Int J Med Microbiol. 2013;303(3):140–9.
Article
CAS
PubMed
Google Scholar
Herren JK, Paredes JC, Schupfer F, Arafah K, Bulet P, Lemaitre B. Insect endosymbiont proliferation is limited by lipid availability. Elife. 2014;3, e02964.
Article
PubMed
PubMed Central
Google Scholar
Atella GC, Bittencourt-Cunha PR, Nunes RD, Shahabuddin M, Silva-Neto MA. The major insect lipoprotein is a lipid source to mosquito stages of malaria parasite. Acta Trop. 2009;109(2):159–62.
Article
CAS
PubMed
Google Scholar
Deitsch KW, Raikhel AS. Cloning and analysis of the locus for mosquito vitellogenic carboxypeptidase. Insect Mol Biol. 1993;2(4):205–13.
Article
CAS
PubMed
Google Scholar
Labaied M, Jayabalasingham B, Bano N, Cha SJ, Sandoval J, Guan G, Coppens I. Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver. Cell Microbiol. 2011;13(4):569–86.
Article
CAS
PubMed
Google Scholar
Cho KO, Kim GW, Lee OK. Wolbachia bacteria reside in host Golgi-related vesicles whose position is regulated by polarity proteins. PLoS One. 2011;6(7), e22703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zels S, Dillen S, Crabbe K, Spit J, Nachman RJ, Vanden Broeck J. Sulfakinin is an important regulator of digestive processes in the migratory locust, Locusta migratoria. Insect Biochem Mol Biol. 2015;61:8–16.
Article
CAS
PubMed
Google Scholar
Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, et al. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science. 2010;330(6000):86–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caragata EP, Real KM, Zalucki MP, McGraw EA. Wolbachia infection increases recapture rate of field-released Drosophila melanogaster. Symbiosis. 2011;54(1):55–60.
Article
Google Scholar
Peng Y, Nielsen JE, Cunningham JP, McGraw EA. Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl Environ Microbiol. 2008;74(13):3943–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turley AP, Moreira LA, O’Neill SL, McGraw EA. Wolbachia infection reduces blood-feeding success in the Dengue fever mosquito. Aedes aegypti Plos Neglect Trop D. 2009;3(9), e516.
Article
Google Scholar
Strunov A, Kiseleva E, Gottlieb Y. Spatial and temporal distribution of pathogenic Wolbachia strain wMelPop in Drosophila melanogaster central nervous system under different temperature conditions. J Invertebr Pathol. 2013;114(1):22–30.
Article
PubMed
Google Scholar
Liu C, Wang JL, Zheng Y, Xiong EJ, Li JJ, Yuan LL, Yu XQ, Wang YF. Wolbachia-induced paternal defect in Drosophila is likely by interaction with the juvenile hormone pathway. Insect Biochem Mol Biol. 2014;49:49–58.
Article
PubMed
CAS
Google Scholar
Moreira LA, Ye YH, Turner K, Eyles DW, McGraw EA, O’Neill SL. The wMelPop strain of Wolbachia interferes with dopamine levels in Aedes aegypti. Parasit Vectors. 2011;4:28.
Article
PubMed
PubMed Central
Google Scholar
Rohrscheib CE, Bondy E, Josh P, Riegler M, Eyles D, van Swinderen B, Weible 2nd MW, Brownlie JC. Wolbachia Influences the Production of Octopamine and Affects Drosophila Male Aggression. Appl Environ Microbiol. 2015;81(14):4573–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenkins AM, Muskavitch MA. Crepuscular Behavioral Variation and Profiling of Opsin Genes in Anopheles gambiae and Anopheles stephensi (Diptera: Culicidae). J Med Entomol. 2015;52(3):296–307.
Article
PubMed
PubMed Central
Google Scholar
Moon YM, Metoxen AJ, Leming MT, Whaley MA, O’Tousa JE. Rhodopsin management during the light-dark cycle of Anopheles gambiae mosquitoes. J Insect Physiol. 2014;70:88–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rund SS, Gentile JE, Duffield GE. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genomics. 2013;14:218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hussain M, O’Neill SL, Asgari S. Wolbachia interferes with the intracellular distribution of Argonaute 1 in the dengue vector Aedes aegypti by manipulating the host microRNAs. RNA Biol. 2013;10(12):1868–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woolfit M, Algama M, Keith JM, McGraw EA, Popovici J. Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis. PLoS One. 2015;10(3), e0118595.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye YH, Woolfit M, Huttley GA, Rances E, Caragata EP, Popovici J, O’Neill SL, McGraw EA. Infection with a virulent strain of Wolbachia disrupts genome-wide patterns of cytosine methylation in the mosquito Aedes aegypti. PLoS One. 2013;8(6), e66482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landmann F, Orsi GA, Loppin B, Sullivan W. Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog. 2009;5(3), e1000343.
Article
PubMed
PubMed Central
CAS
Google Scholar
Riparbelli MG, Giordano R, Ueyama M, Callaini G. Wolbachia-mediated male killing is associated with defective chromatin remodeling. PLoS One. 2012;7(1), e30045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeya T, Broughton S, Alic N, Grandison R, Partridge L. The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila. Proc Biol Sci. 2009;276(1674):3799–807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghedin E, Hailemariam T, DePasse JV, Zhang X, Oksov Y, Unnasch TR, Lustigman S. Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PLoS Negl Trop Dis. 2009;3(10), e525.
Article
PubMed
PubMed Central
CAS
Google Scholar
Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, Wang P, Krishnan MN, Higgs S, Fikrig E. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog. 2011;7(9), e1002189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiggins FM, Hurst GD. Rapid insect evolution by symbiont transfer. Science. 2011;332(6026):185–6.
Article
CAS
PubMed
Google Scholar
Bahia AC, Kubota MS, Tempone AJ, Araujo HR, Guedes BA, Orfano AS, Tadei WP, Rios-Velasquez CM, Han YS, Secundino NF, et al. The JAK-STAT pathway controls Plasmodium vivax load in early stages of Anopheles aquasalis infection. PLoS Negl Trop Dis. 2011;5(11), e1317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garver LS, Dong Y, Dimopoulos G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog. 2009;5(3), e1000335.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu K, Dong Y, Huang Y, Rasgon JL, Agre P. Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection. Proc Natl Acad Sci U S A. 2013;110(43):17504–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 2011;7(5), e1002043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012;33(2):366–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Zhang Y, Williams J, Antoniou E, McCombie WR, Wu S, Zhu W, Davidson NO, Denoya P, Li E. Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. BMC Bioinformatics. 2013;14 Suppl 9:S1.
Article
PubMed
PubMed Central
Google Scholar
Simon P. Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics. 2003;19(11):1439–40.
Article
CAS
PubMed
Google Scholar